Encyclopedia of Food and Agricultural Ethics

Living Edition
| Editors: Paul B. Thompson, David M. Kaplan

Plant Sentience

Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-6167-4_621-1

Introduction

Arguably the most salient characteristic of sentience is the capacity for subjective awareness of sensations and emotional states that are pleasant or unpleasant (DeGrazia 1996, p. 99). Specifically, sentient beings have interests, preferences, and cares associated with avoiding pain, fear, and anxiety (Rowlands 2002, p. 11). They have unpleasant sensory experiences associated with actual or potential tissue damage, emotional responses to perceived threats to their physical or psychological wellbeing, and the desire to evade both.

Although it is generally assumed that only animals have these experiences, ample evidence exists to support the proposition that plants, too, are sentient. This is not a new proposition. It is a common view among animists that dates back many millennia, is a central principle of Jainism , and was defended by Aristotle’s student and subsequent director of the Lyceum, Theophrastus (Hall 2011). But it has been out of favor even among plant...

This is a preview of subscription content, log in to check access.

References

  1. Alpi, A., et al. (2007). Plant neurobiology: No brain, no gain? Trends in Plant Science, 12, 135–136.CrossRefGoogle Scholar
  2. Appel, H. M., & Cocroft, R. B. (2014). Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia, 175, 1257–1266.CrossRefGoogle Scholar
  3. Baluška, F. (2010). Recent surprising similarities between plant cells and neurons. Plant Signaling & Behavior, 5, 87–89.CrossRefGoogle Scholar
  4. Baluška, F., & Mancuso, S. (2009). Plant neurobiology: From stimulus perception to adaptive behavior of plants, via integrated chemical and electrical signaling. Plant Signaling & Behavior, 4, 475–476.CrossRefGoogle Scholar
  5. Baluška, F., Volkmann, D., & Menzel, D. (2005). Plant synapses: Actin-based domains for cell-to-cell communication. Trends in Plant Science, 10, 106–111.CrossRefGoogle Scholar
  6. Baluška, F., Volkmann, D., Hlavacka, A., Mancuso, S., & Barlow, P. W. (2006). Neurobiological view of plants and their body plan. In F. Baluška, S. Mancuso, & D. Volkmann (Eds.), Communication in plants: Neuronal aspects of plant life (pp. 19–23). Berlin: Springer.CrossRefGoogle Scholar
  7. Barlow, P. W. (2008). Reflections on ‘plant neurobiology’. Biosystems, 92, 132–147.CrossRefGoogle Scholar
  8. Bhalla, U. S., & Iyengar, R. (1999). Emergent properties of networks of biological signaling pathways. Science, 283, 381–387.CrossRefGoogle Scholar
  9. Biedrzycki, B. (2010). Kin recognition in plants: A mysterious behavior unsolved. Journal of Experimental Botany, 61, 4123–4128.CrossRefGoogle Scholar
  10. Brenner, E. D., Stahlberg, R., Mancuso, S., VIvanco, J., Baluška, F., & Von Volkenburgh, E. (2006). Plant neurobiology: An integrated view of plant signaling. Trends in Plant Science, 11, 413–419.CrossRefGoogle Scholar
  11. Brenner, E. D., Stahlberg, R., Mancuso, S., Baluška, F., & Von Volkenburgh, E. (2007). Response to Alpi et al.: Plant neurobiology: The gain is more than the name. Trends in Plant Science, 12, 285–286.CrossRefGoogle Scholar
  12. Buhner, S. H. (2002). The lost language of plants: The ecological importance of plant medicines to life on earth. White River Junction: Chelsea Green.Google Scholar
  13. Callaway, R. M. (1995). Positive interactions among plants. The Botanical Review, 61(4), 306–349.CrossRefGoogle Scholar
  14. Callaway, R. M. (2002). The detection of neighbors by plants. Trends in Ecology & Evolution, 17, 104–105.CrossRefGoogle Scholar
  15. Callaway, R. M., Pennings, S. C., & Richards, C. L. (2003). Phenotypic plasticity and interactions among plants. Ecology, 84, 1115–1128.CrossRefGoogle Scholar
  16. Chamowitz, D. (2012). What a plant knows. New York: Scientific American/Farrar, Straus and Giroux.Google Scholar
  17. Ciszak, M., Comparini, D., Mazzolai, B., Baluška, F., Arecchi, F. T., Vicsek, T., & Mancuso, S. (2012). Swarm behavior in plant roots. PLoS One, 7, e29759.CrossRefGoogle Scholar
  18. Darwin, C. (1880). The power of movement in plants. London: J. Murray.CrossRefGoogle Scholar
  19. de Kroon, H., & Hutchings, M. J. (1995). Morphological plasticity in clonal plants: The foraging concept reconsidered. Journal of Ecology, 83, 143–152.CrossRefGoogle Scholar
  20. DeGrazia, D. (1996). Taking animals seriously. New York: Cambridge University Press.CrossRefGoogle Scholar
  21. Dicke, M. J., & Bruin, J. (2001). Chemical information transfer between damaged and undamaged plants. Biochemical Systematics and Ecology, 29, 979–1113.CrossRefGoogle Scholar
  22. Dziubinska, H. (2003). Ways of signal transmission and the physiological role of electrical potentials in plants. Acta Societatis Botanicorum Poloniae, 72, 309–318.CrossRefGoogle Scholar
  23. Farmer, E. E., & Ryan, C. A. (1990). Interplant communication: Airborne methyl Jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proceedings of the National Academy of Sciences of the USA, 87, 7713–7716.CrossRefGoogle Scholar
  24. Firn, R. (2004). Plant intelligence: An alternative point of view. Annals of Botany, 93, 345–351.CrossRefGoogle Scholar
  25. Fromm, J., & Lautner, S. (2007). Electrical signals and their physiological significance in plants. Plant, Cell & Environment, 30, 249–257.CrossRefGoogle Scholar
  26. Gagliano, M., et al. (2014). Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia, 175, 63–72.CrossRefGoogle Scholar
  27. Garzón, P. C., & Keijzer, F. (2009). Cognition in Plants. In F. Baluška (Ed.), Plant–environment interactions (pp. 247–266). Berlin: Springer.Google Scholar
  28. Geber, M. A., Watson, M. A. & de Kroon, H. (1997). Organ preformation, development, and resource allocation in perennials. In: Bazzaz, F. A. & Grace, J. (Eds.), Plant resource allocation (pp. 113–143). San Diego: Academic.Google Scholar
  29. Gersani, M., et al. (2001). Tragedy of the commons as a result of root competition. Ecology, 89, 660–669.CrossRefGoogle Scholar
  30. Grime, J. P., & Mackey, J. M. L. (2002). The role of plasticity in resource capture by plants. Evolutionary Ecology, 16, 299–307.CrossRefGoogle Scholar
  31. Gruntman, M., & Novoplansky, A. (2004). Physiologically mediated self/nonself discrimination in roots. PNAS, 101, 2863–3867.CrossRefGoogle Scholar
  32. Hall, M. (2011). Plants as persons. New York: Columbia University Press.Google Scholar
  33. Hutchings, M. J., & de Kroon, H. (1994). Foraging in plants: The role of morphological plasticity in resource acquisition. Advances in Ecological Research, 25, 159–238.CrossRefGoogle Scholar
  34. Izaguiree, M. M., et al. (2006). Remote sensing of future competitors: Impacts on plant Defences. PNAS, 103, 7170–7174.CrossRefGoogle Scholar
  35. Jackson, R. B., & Caldwell, M. M. (1996). Integrating resource heterogeneity and plant plasticity: Modeling nitrate and phosphate uptake in a patchy soil environment. Journal of Ecology, 84, 891–903.CrossRefGoogle Scholar
  36. Karban, R., & Shiojiri, K. (2009). Self-recognition affects plant communication and defense. Ecology Letters, 12, 502–506.CrossRefGoogle Scholar
  37. Kelly, C. L. (1990). Plant foraging: A marginal value model and coiling response in Cuscuta Subinclusa. Ecology, 71, 1916–1925.CrossRefGoogle Scholar
  38. Lyon, P. (2006). The biogenic approach to cognition. Cognitive Processing, 7(1), 11–29.CrossRefGoogle Scholar
  39. Maina, G. G., Brown, J. S., & Gersani, M. (2002). Intra-plant versus inter-plant competition in beans: Avoidance resource matching or tragedy of the commons. Plant Ecology, 160, 235–247.CrossRefGoogle Scholar
  40. Marder, M. (2012). Plant intentionality and the phenomenological framework of plant intelligence. Plant Signaling & Behavior, 7, 1365–1372.CrossRefGoogle Scholar
  41. Marder, M. (2013). Plant-thinking. New York: Columbia University Press.Google Scholar
  42. Marder, M. (2014). The Philosopher’s plant: An intellectual herbarium. New York: Columbia University Press.CrossRefGoogle Scholar
  43. Molinier, J., Ries, G., Zipfel, C., & Hohn, B. (2006). Transgeneration memory of stress in plants. Nature, 442, 1046–1049.CrossRefGoogle Scholar
  44. Noble, D. (2006). The music of life. New York: Oxford University Press.Google Scholar
  45. Paré, P. W., & Tumlinson, J. H. (1999). Plant volatiles as a defense against insect herbivores. Plant Physiology, 121, 325–332.CrossRefGoogle Scholar
  46. Phillips, H. (2002, July 27). Not just a pretty face: They may be green, but plants aren’t stupid. Helen Phillips Picks Their Brains. New Scientist 175, p. 40.Google Scholar
  47. Pollan, M. (2013, December 23). The Intelligent Plant. The New Yorker 89, p. 92.Google Scholar
  48. Rachels, J. (2004). The basic argument for vegetarianism. In S. F. Sapontzis (Ed.), Food for thought (pp. 70–80). Amherst: Prometheus.Google Scholar
  49. Rowlands, M. (2002). Animals like us. New York: Verso Press.Google Scholar
  50. Schull, J. (1990). Are species intelligent? Behavioral and Brain Sciences, 13, 63–108.CrossRefGoogle Scholar
  51. Seeley, T. D., & Levien, R. A. (1987). A Colony of mind: The beehive as thinking machine. The Sciences, 27, 39–42.CrossRefGoogle Scholar
  52. Stenhouse, D. (1974). The evolution of intelligence. New York: Harper & Row.Google Scholar
  53. Struik, P. C., Yin, X., & Meinke, H. (2008). Plant neurobiology and green plant intelligence: Science, metaphor, and nonsense. Journal of the Science of Food and Agriculture, 88, 363–370.CrossRefGoogle Scholar
  54. Sung, S., & Amasino, R. M. (2000). Molecular genetic study of the memory of winter. Journal of Experimental Botany, 57, 3369–3377.Google Scholar
  55. Sung, S., & Amasino, R. M. (2004). Vernalisation and epigenetics: How plants remember winter. Current Opinion in Plant Biology, 7, 4–10.CrossRefGoogle Scholar
  56. Thaler, J. S. (1999). Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature, 399, 686–688.CrossRefGoogle Scholar
  57. Thompson, M. V., & Holbrook, N. M. (2004). Scaling Phloem Transport: Information Transmission. Plant, Cell & Environment, 27, 509–519.Google Scholar
  58. Trewavas, A. (2005). Plant intelligence. Naturwissenschaften, 92, 401–413.CrossRefGoogle Scholar
  59. Trewavas, A. (2007). Response to Alpi et al.: Plant neurobiology – All metaphors have value. Trends in Plant Science, 12, 231–233.CrossRefGoogle Scholar
  60. Trewavas, A. (2009). What is plant behaviour? Plant, Cell & Environment, 32, 606–616.CrossRefGoogle Scholar
  61. Trewavas, A. (2012). Plants are intelligent too. EMBO Reports, 13, 772–773.CrossRefGoogle Scholar
  62. van Hoven, W. (1991). Mortalities in kudu (Tragelaphus Strepsiceros) populations related to chemical defence in trees. Journal of African Zoology, 105, 141–145.Google Scholar
  63. Vertosick, F. T., Jr. (2002). The genius within. Boston: Houghton Mifflin Harcourt.Google Scholar
  64. Volkov, A. G. (2000). Green plants: Electrochemical interfaces. Journal of Electroanalytical Chemistry, 483, 150–156.CrossRefGoogle Scholar
  65. Warwick, K. (2001). QI: The quest for intelligence. London: Piatkus.Google Scholar
  66. Weiler, W. E. (2003). Sensory principles of higher plants. Angewandte Chemie International Edition, 42, 392–411.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2018

Authors and Affiliations

  1. 1.Department of English and PhilosophyDrexel UniversityPhiladelphiaUSA