Advertisement

Humanoid Kinematics and Dynamics: Open Questions and Future Directions

  • Michael Gienger
  • Jochen J. Steil
Reference work entry

Abstract

This chapter raises open questions about kinematics and dynamics for humanoid robots and sketches some possible future trends and directions. This requires to think about possible use cases in order to make good predictions about the future of kinematic and dynamic models. While initially bipedal walking with its conceptual challenges was of large concern, more recently applications such as service robotics, disaster mitigation, elderly care, and medical robotics become more important. The chapter focuses on three respective future directions and argues that, first, novel concepts in mechatronics have to embrace modularity and failure tolerance and to focus on durability and endurance, concepts that may lead to a larger parameter variance in the mechanisms. Second, it is expected that real-time simulation will play a larger role and may even be included in the control loops while coupling elastic, hydraulic, or pneumatic elements with the multibody dynamics. Third, the chapter makes the prediction that the hybrid combination of data-driven and classical modeling will be key toward becoming more flexible and possibly including more soft elements also in humanoid robots. The chapter concludes with the prediction that the future of kinematic and dynamic modeling is to combine advances in classical rigid-body computations with soft mechatronics, real-time simulation, and a mix of fast computing of classical algorithms and learning methods.

References

  1. 1.
    P. Abbeel, A.Y. Ng, Apprenticeship learning via inverse reinforcement learning, in Proceedings of the Twenty-First International Conference on Machine Learning (ACM, 2004), p. 1Google Scholar
  2. 2.
    P.W. Battaglia, J.B. Hamrick, J.B. Tenenbaum, Simulation as an engine of physical scene understanding. Proc. Natl. Acad. Sci. 110(45), 18327–18332 (2013)CrossRefGoogle Scholar
  3. 3.
    K.M. Ben-Gharbia, A.A. Maciejewski, R.G. Roberts, Kinematic design of manipulators with seven revolute joints optimized for fault tolerance. IEEE Trans. Syst. Man Cybern. 46(10), 1364–1373 (2016)CrossRefGoogle Scholar
  4. 4.
    H. Bremer, Elastic Multibody Dynamics (Springer, Dordrecht, 2008)CrossRefGoogle Scholar
  5. 5.
    T Buschmann, Dynamics and control of redundant robots, Technical University of Munich, 2015Google Scholar
  6. 6.
    K. Caluwaerts, J.J. Steil, Independent joint learning in practice: local error estimates to improve inverse dynamics control, in Humanoids (IEEE, Danvers, 2015), pp. 643–650Google Scholar
  7. 7.
    K.M. Chai, C. Williams, S. Klanke, S. Vijayakumar, Multi-task gaussian process learning of robot inverse dynamics, in Advances in Neural Information Processing Systems, 2009, pp. 265–272Google Scholar
  8. 8.
    L. Colasanto, N.G. Tsagarakis, A.J. Ijspeert, A general whole-body compliance framework for humanoid robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2015), pp. 3962–3968Google Scholar
  9. 9.
    B. Damas, J. Santos-Victor, An online algorithm for simultaneously learning forward and inverse kinematics, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2012), pp. 1499–1506Google Scholar
  10. 10.
    A. Dearden, Y. Demiris, Learning forward models for robots. IJCAI 5, 1440 (2005)Google Scholar
  11. 11.
    R. Deimel, O. Brock, Soft hands for reliable grasping strategies, in Soft Robotics, ed. by A. Verl, A. Albu-Schäffer, O. Brock, A. Raatz (Springer, Berlin/Heidelberg), pp. 211–221Google Scholar
  12. 12.
    M. Florek-Jasińska, T. Wimböck, C. Ott, Humanoid compliant whole arm dexterous manipulation: control design and experiments, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2014), pp. 1616–1621Google Scholar
  13. 13.
    M. Gienger, H. Janssen, C. Goerick, Task-oriented whole body motion for humanoid robots, in 2005 5th IEEE-RAS International Conference on Humanoid Robots (IEEE, 2005), pp. 238–244Google Scholar
  14. 14.
    J.A. Grimes, J.W. Hurst, The design of atrias 1.0 a unique monopod, hopping robot, in Proceedings of the 2012 International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, 2012, pp. 548–554CrossRefGoogle Scholar
  15. 15.
    I. Ha, Y. Tamura, H. Asama, J. Han, D.W. Hong, Development of open humanoid platform darwin-op, in 2011 Proceedings of SICE Annual Conference (SICE) (IEEE, 2011), pp. 2178–2181Google Scholar
  16. 16.
    M. Hersch, E. Sauser, A. Billard, Online learning of the body schema. Int. J. Humanoid Rob. 5(02), 161–181 (2008)CrossRefGoogle Scholar
  17. 17.
    S. Ivaldi, J. Peters, V. Padois, F. Nori, Tools for simulating humanoid robot dynamics: a survey based on user feedback, in 2014 IEEE-RAS International Conference on Humanoid Robots (IEEE, 2014), pp. 842–849Google Scholar
  18. 18.
    A. Jain, M.D. Killpack, A. Edsinger, C.C. Kemp, Reaching in clutter with whole-arm tactile sensing. Int. J. Robot. Res. 32, 458–482 (2013)CrossRefGoogle Scholar
  19. 19.
    M.I. Jordan, D.E. Rumelhart, Forward models: supervised learning with a distal teacher. Cogn. Sci. 16(3), 307–354 (19920CrossRefGoogle Scholar
  20. 20.
    S. Kim, C. Laschi, B. Trimmer, Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Kim, A. Shukla, A. Billard, Catching objects in flight. IEEE Trans. Robot. 30(5), 1049–1065 (2014)CrossRefGoogle Scholar
  22. 22.
    N. Koenig, A. Howard, Design and use paradigms for gazebo, an open-source multi-robot simulator, in Proceedings. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3 (IEEE), pp. 2149–2154Google Scholar
  23. 23.
    M. Lapeyre, P. Rouanet, J. Grizou, S. Nguyen, F. Depraetre, A. Le Falher, P.-Y. Oudeyer, Poppy project: open-source fabrication of 3D printed humanoid robot for science, education and art, in Digital Intelligence 2014, Nantes, 2014, p. 6Google Scholar
  24. 24.
    K. Loffler, M. Gienger, F. Pfeiffer, Control of a biped jogging robot, in 2000 Proceedings of 6th International Workshop on Advanced Motion Control (IEEE, 2000), pp. 601–605Google Scholar
  25. 25.
    M. Lopes, B. Damas, A learning framework for generic sensory-motor maps, in IROS, 2007, pp. 1533–1538Google Scholar
  26. 26.
    F. Meier, D. Kappler, N. Ratliff, S. Schaal, Towards robust online inverse dynamics learning, in Proceedings of IROS (IEEE, 2016), pp. 4034–4039Google Scholar
  27. 27.
    K. Mombaur, A. Truong, J.-P. Laumond, From human to humanoid locomotion – an inverse optimal control approach. Auton. Robot. 28(3), 369–383 (2010)CrossRefGoogle Scholar
  28. 28.
    D. Nguyen-Tuong, J. Peters, Using model knowledge for learning inverse dynamics, in ICRA, 2010, pp. 2677–2682Google Scholar
  29. 29.
    D. Nguyen-Tuong, J. Peters, Model learning for robot control: a survey. Cogn. Process. 12(4), 319–340 (2011)CrossRefGoogle Scholar
  30. 30.
    G. Pratt, J. Manzo, The darpa robotics challenge [competitions]. IEEE Robot. Autom. Mag. 20(2), 10–12 (2013)CrossRefGoogle Scholar
  31. 31.
    G.A. Pratt, M.M. Williamson, Series elastic actuators, in Proceedings. 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems’95. Human Robot Interaction and Cooperative Robots, vol. 1 (IEEE, 1995), pp. 399–406Google Scholar
  32. 32.
    R.F. Reinhart, J.J. Steil, Neural learning and dynamical selection of redundant solutions for inverse kinematic control, in 2011 11th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (IEEE, 2011), pp. 564–569Google Scholar
  33. 33.
    M. Rolf, J.J. Steil, M. Gienger, Goal babbling permits direct learning of inverse kinematics. IEEE Trans. Auton. Ment. Dev. 2(3), 216–229 (2010)CrossRefGoogle Scholar
  34. 34.
    M. Rolf, J.J. Steil, Efficient exploratory learning of inverse kinematics on a bionic elephant trunk. IEEE Trans. Neural Netw. Learn. Syst. 25(6), 1147–1160 (2014)Google Scholar
  35. 35.
    M. Rolf, J.J. Steil, M. Gienger, Learning flexible full body kinematics for humanoid tool use, in International Symposium on Learning and Adaptive Behavior in Robotic Systems, 2010Google Scholar
  36. 36.
    M. Rolf, J.J. Steil, M. Gienger, Mastering growth while bootstrapping sensorimotor coordination, in International Conference on Epigenetic Robotics, 2010Google Scholar
  37. 37.
    G. Schillaci, V.V. Hafner, Random movement strategies in self-exploration for a humanoid robot, in Proceedings of the 6th International Conference on Human-Robot Interaction (ACM, 2011), pp. 245–246Google Scholar
  38. 38.
    J. Scholz, M. Levihn, C. Isbell, D. Wingate, A physics-based model prior for object-oriented MDPs, in Proceedings of the 31st International Conference on Machine Learning (ICML-14), 2014, pp. 1089–1097Google Scholar
  39. 39.
    Z. Shareef, F. Reinhart, J. Steil, Generalizing the inverse dynamical model of KUKA LWR IV+ for load variations using regression in the model space, in Proceedings of IROS (IEEE, 2016), pp. 606–611Google Scholar
  40. 40.
    A.D. Souza, S. Vijayakumar, S. Schaal, Learning inverse kinematics, in Proceedings. 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1 (IEEE, 2001), pp. 298–303Google Scholar
  41. 41.
    N.G. Tsagarakis, G. Metta, G. Sandini, D. Vernon, R. Beira, F. Becchi, L. Righetti, J. Santos-Victor, A.J. Ijspeert, M.C. Carrozza et al., iCub: the design and realization of an open humanoid platform for cognitive and neuroscience research. Adv. Robot. 21(10), 1151–1175 (2007)CrossRefGoogle Scholar
  42. 42.
    T.T. Um, M.S. Park, J.M. Park, Independent joint learning: a novel task-to-task transfer learning scheme for robot models, in ICRA, 2014, pp. 5679–5684Google Scholar
  43. 43.
    B. Vanderborght, A. Albu-Schäffer, A. Bicchi, E. Burdet, D.G. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh et al., Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)CrossRefGoogle Scholar
  44. 44.
    S. Vijayakumar, A. D’souza, S. Schaal, Incremental online learning in high dimensions. Neural Comput. 17(12), 2602–2634 (2005)MathSciNetCrossRefGoogle Scholar
  45. 45.
    S. Wittmeier, C. Alessandro, N. Bascarevic, K. Dalamagkidis, D. Devereux, A. Diamond, M. Jäntsch, K. Jovanovic, R. Knight, H.G. Marques et al., Toward anthropomimetic robotics: development, simulation, and control of a musculoskeletal torso. Artif. Life 19(1), 171–193 (2013)CrossRefGoogle Scholar
  46. 46.
    S. Wrede, C. Emmerich, R. Grünberg, A. Nordmann, A. Swadzba, J.J. Steil, A user study on kinesthetic teaching and learning for efficient reconfiguration of redundant robots. J. Human-Rob. Interaction 2(1), 56–81 (2013)Google Scholar
  47. 47.
    E. Yoshida, V. Hugel, P. Blazevic, K. Yokoi, K. Harada, in Dexterous Humanoid Whole-Body Manipulation by Pivoting, Humanoid Robots, Human-like Machines, ed. by M. Hackel (InTech, 2007),  https://doi.org/10.5772/4818Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Honda Research Institute Europe GmbHOffenbach am MainGermany
  2. 2.Institute for Robotics and Process ControlTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations