Advertisement

Actuator Modeling and Simulation

  • Jörn Malzahn
  • Victor Barasuol
  • Klaus Janschek
Reference work entry

Abstract

Humanoid robot actuators are highly integrated mechatronic systems. They exist in a broad variety of dimensions. Their operating principle can be based on electric, hydraulic, or pneumatic power. In any case, their modeling and simulation involve knowledge across multiple physical domains such as mechanics and electro-, fluid-, and thermodynamics. The domains are mutually coupled through energy transfer and conversion processes. The substantial degree of complexity arising from all these aspects renders the high-fidelity modeling and simulation of humanoid robot actuators a challenging task. This chapter equips the reader starting to explore this field with an overview over modeling formalisms and software tools suitable to govern this complexity. Moreover, it introduces the fundamental working principles behind electric, hydraulic, and pneumatic actuation. The experienced reader will find information about advanced topics on parasitic effects that are frequently encountered when working in depth on the design and control of humanoid robot actuators. In addition, the chapter covers compliant actuation, which is currently a very active research direction toward a new generation of humanoid robots capable of solving real-world tasks in unstructured dynamic environments.

References

  1. 1.
    N.J. Ahmad, F. Khorrami, Adaptive control of systems with backlash hysteresis at the input, in Proceedings of the American Control Conference, 1999, vol. 5 (IEEE, 1999), pp. 3018–3022Google Scholar
  2. 2.
    A. Akers, M. Gassman, R.J. Smith, Hydraulic Power System Analysis (CRC/Taylor & Francis, Boca Raton, 2006). oCLC:ocm64083948CrossRefGoogle Scholar
  3. 3.
    F. Al-Bender, V. Lampaert, J. Swevers, The generalized Maxwell-slip model: a novel model for friction simulation and compensation. IEEE Trans. Autom. Control 50(11), 1883–1887 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Alfayad, Robot humanoïde hydroïd, Editions Universitaires Europeennes, 2011Google Scholar
  5. 5.
    I.S. Beiker others, VDI 2206 – Entwicklungsmethodik für mechatronische Systeme.pdf, 2001Google Scholar
  6. 6.
    G. Bertotti, I.D. Mayergoyz (eds.), The Science of Hysteresis, 1st edn. (Academic, Amsterdam/Boston, 2006)Google Scholar
  7. 7.
    R.G. Budynas, J.K. Nisbett, Shigley’s Mechanical Engineering Design, 9th edn. McGraw-Hill Series in Mechanical Engineering (McGraw-Hill, New York, 2011)Google Scholar
  8. 8.
    G. Cheng, S. Hyon, J. Morimoto, A. Ude, J.G. Hale, G. Colvin , W. Scroggin, S.C. Jacobsen, CB: a humanoid research platform for exploring neuroscience. Adv. Robot. 21(10), 1097–1114 (2007)CrossRefGoogle Scholar
  9. 9.
    G.K. Costa, N. Sepehri, Hydrostatic Transmissions and Actuators: Operation, Modelling and Applications (Wiley, Chichester, 2015)Google Scholar
  10. 10.
    F. Daerden, D. Lefeber, Pneumatic artificial muscles: actuators for robotics and automation. Eur. J. Mech. Environ. Eng. 47(1), 11–21 (2002)Google Scholar
  11. 11.
    V. De Negri, J. Filho, A. de Souza, A design method for hydraulic positioning systems, in Proceedings of the National Conference on Fluid Power (NCFP), vol 51, 2008, p. 669Google Scholar
  12. 12.
    N.B. Do, A.A. Ferri, O.A. Bauchau, Efficient simulation of a dynamic system with LuGre friction. J. Comput. Nonlinear Dyn. 2(4), 281 (2007). doi: 10.1115/1.2754304CrossRefGoogle Scholar
  13. 13.
    S. Eppinger, W. Seering, Understanding bandwidth limitations in robot force control, in Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, 1987, pp. 904–909Google Scholar
  14. 14.
    S.D. Eppinger, W.P. Seering, Three dynamic problems in robot force control, in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 1989), pp. 392–397Google Scholar
  15. 15.
    P. Fritzson, P. Bunus, Modelica-a general object-oriented language for continuous and discrete-event system modeling and simulation, in Proceedings of the 35th Annual Simulation Symposium (IEEE, 2002), pp. 365–380Google Scholar
  16. 16.
    W.C. Gan, L. Qiu, Torque and velocity ripple elimination of AC permanent magnet motor control systems using the internal model principle. IEEE/ASME Trans. Mechatron. 9(2), 436–447 (2004). doi:  https://doi.org/10.1109/TMECH.2004.828626MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Ham, T. Sugar, B. Vanderborght, K. Hollander, D. Lefeber, Compliant actuator designs. IEEE Robot. Autom. Mag. 16(3), 81–94 (2009). doi:  https://doi.org/10.1109/MRA.2009.933629CrossRefGoogle Scholar
  18. 18.
    V. Hassani, T. Tjahjowidodo, T.N. Do, A survey on hysteresis modeling, identification and control. Mech. Syst. Signal Process. 49(1–2), 209–233 (2014). doi:  https://doi.org/10.1016/j.ymssp.2014.04.012CrossRefGoogle Scholar
  19. 19.
    J. Hurst, A. Rizzi, D. Hobbelen, Series elastic actuation: Potential and pitfalls, in International Conference on Climbing and Walking Robots, 2004Google Scholar
  20. 20.
    S.M. Hwang, J.B. Eom, G.B. Hwang, W.B. Jeong, Y.H. Jung, Cogging torque and acoustic noise reduction in permanent magnet motors by teeth pairing. IEEE Trans. Magn. 36(5), 3144–3146 (2000)CrossRefGoogle Scholar
  21. 21.
    S.H. Hyon, D. Suewaka, Y. Torii, N. Oku, H. Ishida, Development of a fast torque-controlled hydraulic humanoid robot that can balance compliantly, in 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), 2015, pp. 576–581. doi:  https://doi.org/10.1109/HUMANOIDS.2015.7363420
  22. 22.
    K. Janschek, Mechatronic Systems Design. (Springer, Berlin/Heidelberg, 2012)CrossRefGoogle Scholar
  23. 23.
    H. Kaminaga, R. Masumura, T. Ko, M. Komagata, S. Sato, S. Yorita, Y. Nakamura, Mechanism and control of wholebody electro-hydrostatic actuator driven humanoid robot hydra, in The 2016 International Symposium on Experimental Robotics (ISER’2016), 2016Google Scholar
  24. 24.
    K.F. Laurin-Kovitz, J.E. Colgate, S.D. Carnes, Design of components for programmable passive impedance, in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 1991), pp. 1476–1481Google Scholar
  25. 25.
    W. Leonhard, Control of Electrical Drives, 3rd edn. (Werner Leonhard, Berlin/Heidelberg/New York, 2001)CrossRefGoogle Scholar
  26. 26.
    Y. Liu, Z.Q. Zhu, D. Howe, Commutation-torque-ripple minimization in direct-torque-controlled PM brushless DC drives. IEEE Trans. Ind. Appl. 43(4), 1012–1021 (2007). doi:  https://doi.org/10.1109/TIA.2007.900474CrossRefGoogle Scholar
  27. 27.
    H.E. Merritt (ed.), Hydraulic Control Systems (John Wiley and Sons, New York, 1967)Google Scholar
  28. 28.
    R. Merzouki (ed.), Intelligent Mechatronic Systems: Modeling, Control and Diagnosis (Springer, London/New York, 2013). oCLC:ocn828059950Google Scholar
  29. 29.
    G. Nelson, A. Saunders, N. Neville, B. Swilling, J. Bondaryk, D. Billings, C. Lee, R. Playter, M. Raibert, PETMAN: a humanoid robot for testing chemical protective clothing. J. Robot. Soc. Jpn. 30(4), 372–377 (2012). doi:  https://doi.org/10.7210/jrsj.30.372CrossRefGoogle Scholar
  30. 30.
    M. Nordin, J. Galic’, P.O. Gutman, New models for backlash and gear play. Int. J. Adapt. Control Signal Process. 11(1), 49–63 (1997)MathSciNetCrossRefGoogle Scholar
  31. 31.
    N. Paine, S. Oh, L. Sentis, Design and control considerations for high-performance series elastic actuators. IEEE/ASME Trans. Mechatron. 19(3), 1080–1091 (2014). doi:  https://doi.org/10.1109/TMECH.2013.2270435CrossRefGoogle Scholar
  32. 32.
    M. Raibert, Legged Robots That Balance (MIT Press, 1986)Google Scholar
  33. 33.
    D.W. Robinson, J.E. Pratt, D.J. Paluska, G.A. Pratt, Series elastic actuator development for a biomimetic walking robot, in Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (IEEE, 1999), pp. 561–568Google Scholar
  34. 34.
    W. Roozing, Z. Li, G. Medrano-Cerda, D. Caldwell, N. Tsagarakis, Development and control of a compliant asymmetric antagonistic actuator for energy efficient mobility. IEEE/ASME Trans. Mechatron. 21(2), 1–1 (2016). doi:  https://doi.org/10.1109/TMECH.2015.2493359CrossRefGoogle Scholar
  35. 35.
    B. Siciliano (ed.), Robotics: Modelling, Planning and Control. Advanced Textbooks in Control and Signal Processing (Springer, London, 2009). oCLC:ocn144222188Google Scholar
  36. 36.
    T. Tjahjowidodo, F. Al-Bender, H. Van Brussel, Friction identification and compensation in a DC motor. IFAC Proc. Volumes 38(1), 554–559 (2005)CrossRefGoogle Scholar
  37. 37.
    B. Tondu, Artificial muscles for humanoid robots, in M. Hackel (ed.), Humanoid Robots, Human-Like Machines (I-Tech Education and Publishing, Rijeka, 2007)Google Scholar
  38. 38.
    N. Tsagarakis, D.G. Caldwell, Improved modelling and assessment of pneumatic muscle actuators, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’2000), vol. 4 (IEEE, 2000), pp. 3641–3646Google Scholar
  39. 39.
    A.J. van der Schaft, D. Jeltsema, Port-Hamiltonian Systems Theory: An Introductory Overview (Now Publishers Inc., Massachusetts, 2014). oCLC:881738825Google Scholar
  40. 40.
    B. Vanderborght, A. Albu-Schaeffer, A. Bicchi, E. Burdet, D. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Garabini, M. Grebenstein, G, Grioli, S. Haddadin, H. Hoppner, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N. Tsagarakis, M. Van Damme, R. Van Ham, L. Visser, S. Wolf, Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013). doi:  https://doi.org/10.1016/j.robot.2013.06.009CrossRefGoogle Scholar
  41. 41.
    B. Verrelst, R. Van Ham, B. Vanderborght, D. Lefeber, F. Daerden, M. Van Damme, Second generation pleated pneumatic artificial muscle and its robotic applications. Adv. Robot. 20(7), 783–805 (2006)CrossRefGoogle Scholar
  42. 42.
    T.J. Viersma (ed.), Analysis, Synthesis, and Design of Hydraulic Servosystems and Pipelines. (Elsevier Scientific Publishing Company, 1980)Google Scholar
  43. 43.
    S. Wolf, G. Grioli, O. Eiberger, W. Friedl, M. Grebenstein, H. Hoppner, E. Burdet, D.G. Caldwell, R. Carloni, M.G. Catalano, D. Lefeber, S. Stramigioli, N. Tsagarakis, M. Van Damme, R. Van Ham, B. Vanderborght, L.C. Visser, A. Bicchi, A. Albu-Schaffer, Variable stiffness actuators: review on design and components. IEEE/ASME Trans. Mechatron. 21(5), 2418–2430 (2016). doi:  https://doi.org/10.1109/TMECH.2015.2501019CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jörn Malzahn
    • 1
  • Victor Barasuol
    • 1
  • Klaus Janschek
    • 2
  1. 1.Department of Advanced RoboticsIstituto Italiano di TecnologiaGenoaItaly
  2. 2.Faculty of Electrical and Computer Engineering, Institute of AutomationTechnische Universität DresdenDresdenGermany

Personalised recommendations