Advertisement

Balancing via Position Control

  • Youngjin Choi
  • Yonghwan Oh
  • Giho Jang
Reference work entry

Abstract

This chapter describes the balancing scheme based on the position control using the kinematic resolution method of center of mass (CoM) Jacobian. First, the simplified rolling sphere model is introduced for bipedal robots. Second, the kinematic resolution method of CoM Jacobian having the embedded task motion makes a humanoid robot to be balanced automatically during the execution of embedded task motion; indeed it offers the ability of whole-body coordination to the humanoid robots. Third, the simultaneous CoM and zero moment point (ZMP) stabilizer consists of the CoM control minus the ZMP control. Also the CoM and ZMP stabilizer brings the disturbance input-to-state stability (ISS) for the simplified robot model. Finally the effectiveness of the CoM and ZMP stabilizer combined with the kinematic resolution method is verified through experiments in regard to dancing and walking of humanoid robot.

References

  1. 1.
    Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, K. Tanie, Planning walking patterns for a biped robot, in Proceedings of IEEE International Conference on Robotics and Automation, 2001, pp. 280–289Google Scholar
  2. 2.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, H. Hirukawa, A realtime pattern generator for biped walking, in Proceedings of IEEE International Conference on Robotics and Automation, 2002, pp. 31–37Google Scholar
  3. 3.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, in Proceedings of IEEE International Conference on Robotics and Automation, 2003, pp. 1620–1626Google Scholar
  4. 4.
    Y. Choi, D. Kim, B.J. You, On the walking control for humanoid robot based on the kinematic resolution of com jacobian with embedded motion, in Proceedings of IEEE International Conference on Robotics and Automation, 2006, pp. 2655–2660Google Scholar
  5. 5.
    J.W. Grizzle, E.R. Westervelt, C. Canudas-de Wit, Event-based PI control of an underactuated biped walker, in Proceedings of 42nd IEEE Conference on Decision and Control, 2003, pp. 3091–3096Google Scholar
  6. 6.
    K. Hirai, M. Hirose, Y. Haikawa, T. Takenaka, The development of Honda humanoid robot, in Proceedings of the IEEE International Conference on Robotics and Automation, 1998, pp. 1321–1326Google Scholar
  7. 7.
    S. Kajita, K. Yokoi, M. Saigo, K. Tanie, Balancing a humanoid robot using backdrive concerned torque control and direct angular momentum feedback, in Proceedings of the IEEE International Conference on Robotics and Automation, 2001, pp. 3376–3382Google Scholar
  8. 8.
    J.H. Kim, J.H. Oh, Walking control of the humanoid platform KHR-1 based on torque feedback control, in Proceedings of the IEEE International Conference on Robotics and Automation, 2004, pp. 623–628Google Scholar
  9. 9.
    S. Lohmeier, K. Loffler, M. Gienger, H. Ulbrich, F. Pfeiffer, Computer system and control of biped “Johnnie”, in Proceedings of the IEEE International Conference on Robotics and Automation, 2004, pp. 4222–4227Google Scholar
  10. 10.
    J.H. Park, Impedance control for biped robot locomotion. IEEE Trans. Robot. Autom. 17(6), 870–882 (2001)Google Scholar
  11. 11.
    A. Takanishi, H.o. Lim, M. Tsuda, I. Kato, Realization of dynamic biped walking stabilized by trunk motion on a sagittally uneven surface, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 1990, pp. 323–330Google Scholar
  12. 12.
    E.R. Westervelt, J.W. Grizzle, D.E. Koditschek, Hybrid zero dynamics of planar biped walkers. IEEE Trans. Autom. Control 48(1), 42–56 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    T. Nagasaki, S. Kajita, K. Yokoi, K. Kaneko, K. Tanie, Running pattern generation and its evaluation using a realistic humanoid model, in Proceedings of the IEEE International Conference on Robotics and Automation, 2003, pp. 1336–1342Google Scholar
  14. 14.
    K. Nagasaka, Y. Kuroki, S. Suzuki, Y. Itoh, J. Yamaguchi, Integrated motion control for walking, jumping and running on a small bipedal entertainment robot, in Proceedings of the IEEE International Conference on Robotics and Automation, 2004, pp. 3189–3194Google Scholar
  15. 15.
    Y. Choi, D. Kim, Y. Oh, B.J. You, Posture/walking control for humanoid robot based on kinematic resolution of CoM Jacobian with embedded motion. IEEE Trans. Robot. 23(6), 1285–1293 (2007)CrossRefGoogle Scholar
  16. 16.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Resolved momentum control: humanoid motion planning based on the linear and angular momentum, in Proceedings of the IEEE International Conference on Robotics and Automation, 2003, pp. 1644–1650Google Scholar
  17. 17.
    L. Sentis, O. Khatib, Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int. J. Humanoid Robot. 2(4), 505–518 (2005)CrossRefGoogle Scholar
  18. 18.
    A. Goswami, W. Kallem, Rate of change of angular momentum and balance maintenance of biped robots, in Proceedings of the IEEE International Conference on Robotics and Automation, 2004, pp. 3785–3790Google Scholar
  19. 19.
    K. Harada, S. Kajita, K. Kaneko, H. Hirukawa, ZMP analysis for arm/leg coordination, in Proceedings of the IEEE International Conference on Robotics and Automation (IEEE, 2003), pp. 75–81Google Scholar
  20. 20.
    T. Sugihara, Y. Nakamura, Whole-body cooperative balancing of humanoid robot using COG Jacobian, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, pp. 2575–2580Google Scholar
  21. 21.
    J. Pratt, J. Carff, S. Drakunov, A. Goswami, Capture point: a step toward humanoid push recovery, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots, 2006, pp. 200–207Google Scholar
  22. 22.
    A.L. Hof, The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking. Hum. Mov. Sci. 27(1), 112–125 (2008)CrossRefGoogle Scholar
  23. 23.
    J. Englsberger, C. Ott, M. Roa, A. Albu-Schäffer, G. Hirzinger, Others, Bipedal walking control based on capture point dynamics, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 4420–4427Google Scholar
  24. 24.
    Y. Choi, B.J. You, S.R. Oh, On the stability of indirect ZMP controller for biped robot systems, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004, pp. 1966–1971Google Scholar
  25. 25.
    Y. Choi, W.K. Chung, PID Trajectory Tracking Control for Mechanical Systems (Springer, Berlin/New York, 2004)Google Scholar
  26. 26.
    H.K. Khalil, Nonlinear Control (Pearson, Boston, 2015)Google Scholar
  27. 27.
  28. 28.
  29. 29.
  30. 30.
  31. 31.
  32. 32.

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Electrical EngineeringHanyang UniversityAnsanSouth Korea
  2. 2.Center for Robotics ResearchKorea Institute of Science and Technology (KIST)SeoulSouth Korea
  3. 3.Department of Mechanical EngineeringUniversity of NevadaLas VegasUSA

Personalised recommendations