Advertisement

Technical Implementations of the Sense of Balance

  • Michael Bloesch
  • Marco Hutter
Reference work entry

Abstract

Control algorithms for legged robots rely on accurate and fail-safe ego-motion estimation in order to keep balance and perform desired tasks. To this end, the robot must integrate the measurements from different sensor modalities into a single consistent state estimation. In particular, the estimation process must provide estimates of the gravity direction and the local velocities of the robot since those quantities are essential for stabilizing the system and to counteract external disturbances. In comparison to other types of robots, legged robots interact through intermittent contacts with the surrounding. This provides the system with an additional source of information which can be leveraged in order to improve the state estimation. Since there is no one-size-fits-all solution, the following chapter will provide an insight into the different concepts and algorithms by discussing state-of-the-art approaches and examples. This should enable the reader to design a tailored state estimation solution to his or her specific robot and environment.

References

  1. 1.
    R.J. Peterka, Sensorimotor integration in human postural control. J. Neurophysiol. 88, 1097 (2002)CrossRefGoogle Scholar
  2. 2.
    M. Bloesch, H. Sommer, T. Laidlow, M. Burri, G. Nützi, P. Fankhauser, D. Bellicoso, C. Gehring, S. Leutenegger, M. Hutter, R. Siegwart, A primer on the differential calculus of 3D orientations. CoRR abs/1606.0 (2016). arXiv:1606.05285Google Scholar
  3. 3.
    G.P. Roston, E.P. Krotkov, Dead reckoning navigation for walking robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 1992, pp. 607–612Google Scholar
  4. 4.
    B. Gaßmann, F. Zacharias, J.M. Zöllner, R. Dillmann, Localization of walking robots, in Proceedings – IEEE International Conference on Robotics and Automation, Apr 2005, pp. 1471–1476Google Scholar
  5. 5.
    M. Bloesch, C. Gehring, P. Fankhauser, M. Hutter, M.A. Hoepflinger, R. Siegwart, State estimation for legged robots on unstable and slippery terrain, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 6058–6064Google Scholar
  6. 6.
    J. Ma, M. Bajracharya, S. Susca, L. Matthies, M. Malchano, Real-time pose estimation of a dynamic quadruped in GPS-denied environments for 24-hour operation. Int. J. Robot. Res. (2015).  https://doi.org/10.1177/0278364915587333CrossRefGoogle Scholar
  7. 7.
    B. Siciliano, O. Khatib, Springer Handbook of Robotics (Springer, Berlin, 2008)CrossRefGoogle Scholar
  8. 8.
    J. Nikolic, P. Furgale, A. Melzer, R. Siegwart, Maximum likelihood identification of inertial sensor noise model parameters. IEEE Sensors J. 16, 163 (2016)CrossRefGoogle Scholar
  9. 9.
    N. El-Sheimy, H. Hou, X. Niu, Analysis and modeling of inertial sensors using Allan variance. IEEE Trans. Instrum. Meas. 57, 140 (2008)CrossRefGoogle Scholar
  10. 10.
    H. Strasdat, A.J. Davison, J.M.M. Montiel, K. Konolige, Double window optimisation for constant time visual SLAM, in IEEE International Conference on Computer Vision (2011), pp. 2352–2359Google Scholar
  11. 11.
    J. Engel, T. Schöps, D. Cremers, LSD-SLAM: large-scale direct monocular SLAM, in European Conference on Computer Vision (2014), pp. 834–849Google Scholar
  12. 12.
    C. Forster, M. Pizzoli, D. Scaramuzza, SVO: fast semi-direct monocular visual odometry, in IEEE International Conference on Robotics and Automation (2014)Google Scholar
  13. 13.
    S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, P. Furgale, Keyframe-based visualinertial odometry using nonlinear optimization. Int. J. Robot. Res. 34, 314 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Bloesch, S. Omari, M. Hutter, R. Siegwart, Robust visual inertial odometry using a direct EKF-based approach, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2015), pp. 298–304Google Scholar
  15. 15.
    F. Pomerleau, F. Colas, R. Siegwart, S. Magnenat, Comparing ICP variants on real-world data sets. Auton. Robot. 34, 133 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Grewal, A. Andrews, Kalman Filtering: Theory and Practice Using MATLAB, vol. 5, 2nd edn. (Wiley, New York, 2001)Google Scholar
  17. 17.
    R.E. Kalman, A new approach to linear filtering and prediction problems. J. Fluids Eng. 82, 35 (1960)CrossRefGoogle Scholar
  18. 18.
    C. Hertzberg, R. Wagner, U. Frese, L. Schröder, Integrating generic sensor fusion algorithms with sound state representations through encapsulation of manifolds. Inform. Fusion 14, 57 (2011). arXiv:arXiv:1107.1119v1CrossRefGoogle Scholar
  19. 19.
    M.F. Fallon, M. Antone, N. Roy, S. Teller, Drift-free humanoid state estimation fusing kinematic, inertial and LIDAR sensing, in 2014 IEEE- RAS International Conference on Humanoid Robots (2014), pp. 112–119Google Scholar
  20. 20.
    P.C. Lin, H. Komsuoglu, D.E. Koditschek, Sensor data fusion for body state estimation in a hexapod robot with dynamical gaits. IEEE Trans. Robot. 22, 932 (2006)CrossRefGoogle Scholar
  21. 21.
    M. Görner, A. Stelzer, A leg proprioception based 6 DOF odometry for statically stable walking robots. Auton. Robot. 34, 311 (2013)CrossRefGoogle Scholar
  22. 22.
    M. Bloesch, M. Hutter, M.A. Hoepflinger, S. Leutenegger, C. Gehring, D. Remy, R. Siegwart, State estimation for legged robots consistent fusion of leg kinematics and IMU, in Robotics Science and Systems Conference (2012)Google Scholar
  23. 23.
    N. Rotella, M. Bloesch, L. Righetti, S. Schaal, State estimation for a humanoid robot, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2014)Google Scholar
  24. 24.
    A. Chilian, H. Hirschmüller, M. Görner, Multisensor data fusion for robust pose estimation of a six-legged walking robot, in IEEE International Conference on Intelligent Robots and Systems (2011), pp. 2497–2504Google Scholar
  25. 25.
    M. Reinstein, M. Hoffmann, Dead reckoning in a dynamic quadruped robot based on multimodal proprioceptive sensory information. IEEE Trans. Robot. 29, 563 (2012)CrossRefGoogle Scholar
  26. 26.
    J. Ma, S. Susca, M. Bajracharya, L. Matthies, M. Malchano, D. Wooden, Robust multi-sensor, day/night 6-DOF pose estimation for a dynamic legged vehicle in GPS-denied environments, in Proceedings IEEE International Conference on Robotics and Automation (2012), pp. 619–626Google Scholar
  27. 27.
    J. Englsberger, A. Werner, C. Ott, B. Henze, M.A. Roa, G. Garofalo, R. Burger, A. Beyer, O. Eiberger, K. Schmid, Overview of the torque-controlled humanoid robot TORO, in IEEE International Conference on Humanoid Robots (2014), pp. 916–923Google Scholar
  28. 28.
    M. Johnson, B. Shrewsbury, S. Bertrand, T. Wu, D. Duran, M. Floyd, P Abeles, D. Stephen, N. Mertins, A. Lesman, J. Carff, W. Rifenburgh, P. Kaveti, W. Straatman, J. Smith, M. Griffioen, B. Layton, T. de Boer, T. Koolen, P. Neuhaus, J. Pratt, Team IHMC’s lessons learned from the DARPA robotics challenge trials. J. Field Robot. (2015).  https://doi.org/10.1002/rob
  29. 29.
    S. Singh, P. Csonka, K. Waldron, Optical flow aided motion estimation for legged locomotion, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2006), pp. 1738–1743Google Scholar
  30. 30.
    D. Belter, P. Skrzypczynski, Precise self-localization of a walking robot on rough terrain using parallel tracking and mapping. Ind. Robot-an Int. J. 40, 229 (2013)CrossRefGoogle Scholar
  31. 31.
    S.P.N. Singh, K.J. Waldron, Attitude estimation for dynamic legged locomotion using range and inertial sensors, in IEEE International Conference on Robotics and Automation (2005), pp. 1663–1668Google Scholar
  32. 32.
    M. Neunert, M. Giftthaler, M. Frigerio, C. Semini, J. Buchli, Fast derivatives of rigid body dynamics for control, optimization and estimation, in 2016 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (2016)Google Scholar
  33. 33.
    X. Xinjilefu, S. Feng, C.G. Atkeson, Dynamic state estimation using quadratic programming, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (2014), pp. 989–994Google Scholar
  34. 34.
    O. Gür, U. Saranli, Model-based proprioceptive state estimation for spring-mass running, in Robotics: Science and Systems VII (2012), pp. 105–112Google Scholar
  35. 35.
    B.J. Stephens, State estimation for force-controlled humanoid balance using simple models in the presence of modeling error, in Proceedings IEEE International Conference on Robotics and Automation (2011), pp. 3994–3999Google Scholar
  36. 36.
    Xinjilefu, C.G. Atkeson, State estimation of a walking humanoid robot, in IEEE International Conference on Intelligent Robots and Systems (2012), pp. 3693–3699Google Scholar
  37. 37.
    Y. Aoustin, F. Plestan, V. Lebastard, Experimental comparison of several posture estimation solutions for biped robot Rabbit, in IEEE International Conference on Robotics and Automation (2008), pp. 1270–1275Google Scholar
  38. 38.
    V. Lebastard, Y. Aoustin, F. Plestan, Estimation of absolute orientation for a bipedal robot: experimental results. IEEE Trans. Robot. 27, 170 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Autonomous Systems LabETH ZurichZurichSwitzerland
  2. 2.Robotic Systems LabETH ZurichZurichSwitzerland

Personalised recommendations