Advertisement

Principles of Energetics and Stability in Legged Locomotion

  • Jeremy D. Wong
  • J. Maxwell Donelan
Reference work entry

Abstract

People are skilled walkers and runners. We move with economy, agility, and speed and can do so even while we travel through our rough and variable world. Present-day humanoid robots are certainly much less capable than humans at accomplishing the same locomotor tasks [1]. One potential path to improving the design and control of robots is to draw inspiration and guidance from biology. That is, we may be able to build more capable robots if we better understand how people move. One argument against this possibility is that humans and robots are comprised of fundamentally different components. Where robots are built using metals, encoders, wires, computers, magnetic motors, and batteries, humans have evolved to use bone, sensory cells, nerves, brains, muscles, and food.

References

  1. 1.
    C.G. Atkeson, B.P.W. Babu, N. Banerjee, D. Berenson, C.P. Bove, X. Cui, M. DeDonato, R. Du, S. Feng, P. Franklin, M. Gennert, J.P. Graff, P. He, A. Jaeger, J. Kim, K. Knoedler, L. Li, C. Liu, X. Long, T. Padir, F. Polido, G.G. Tighe, X. Xinjilefu, No falls, no resets: reliable humanoid behavior in the DARPA robotics challenge, in 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), (IEEE, 2015), pp. 623–630Google Scholar
  2. 2.
    D. Marr, Vision: A Computational Approach (MIT Press, Cambridge, 1982)Google Scholar
  3. 3.
    S. Vogel, Cats’ Paws and Catapults: Mechanical Worlds of Nature and People (WW Norton & Company, New York, 1998)Google Scholar
  4. 4.
    C.V. Ward, Interpreting the posture and locomotion of Australopithecus afarensis: where do we stand? Am. J. Phys. Anthropol. 119, 185–215 (2002)CrossRefGoogle Scholar
  5. 5.
    J. Nichols, The Origin and Dispersal of Languages: Linguistic Evidence (University of California Press, San Francisco, 1998)Google Scholar
  6. 6.
    R.W. Wrangham, Catching Fire (Profile Books, London, 2009)Google Scholar
  7. 7.
    C.O. Lovejoy, The natural history of human gait and posture. Gait Posture 21, 113–124 (2005)CrossRefGoogle Scholar
  8. 8.
    D.M. Bramble, D.E. Lieberman, Endurance running and the evolution of Homo. Nature 432, 345–352 (2004)CrossRefGoogle Scholar
  9. 9.
    K.E. Adolph, W.G. Cole, M. Komati, J.S. Garciaguirre, D. Badaly, J.M. Lingeman, G.L.Y. Chan, R.B. Sotsky, How do you learn to walk? Thousands of steps and dozens of falls per day. Psychol. Sci. 23, 1387–1394 (2012)CrossRefGoogle Scholar
  10. 10.
    J.L. O’Loughlin, Y. Robitaille, J.F. Boivin, S. Suissa, Incidence of and risk factors for falls and injurious falls among the community-dwelling elderly. Am. J. Epidemiol. 137, 342–354 (1993)CrossRefGoogle Scholar
  11. 11.
    M.S. Orendurff, J.A. Schoen, G.C. Bernatz, A.D. Segal, G.K. Klute, How humans walk: bout duration, steps per bout, and rest duration. J. Rehabil. Res. Dev. 45, 1077–1089 (2008)CrossRefGoogle Scholar
  12. 12.
    D.H. Sutherland, R. Olshen, L. Cooper, S.L. Woo, The development of mature gait. J. Bone Joint Surg. Am. 62, 336–353 (1980)CrossRefGoogle Scholar
  13. 13.
    D.H. Sutherland, The evolution of clinical gait analysis part l: kinesiological EMG. Gait Posture 14, 61–70 (2001)CrossRefGoogle Scholar
  14. 14.
    J.A. Levine, Measurement of energy expenditure. Public Health Nutr. 8, 1123–1132 (2005)CrossRefGoogle Scholar
  15. 15.
    C. Tudor-Locke, C.L. Craig, Y. Aoyagi, R.C. Bell, K.A. Croteau, I. De Bourdeaudhuij, B. Ewald, A.W. Gardner, Y. Hatano, L.D. Lutes, S.M. Matsudo, F.A. Ramirez-Marrero, L.Q. Rogers, D.A. Rowe, M.D. Schmidt, M.A. Tully, S.N. Blair, How many steps/day are enough? For older adults and special populations. Int. J. Behav. Nutr. Phys. Act. 8, 80 (2011)CrossRefGoogle Scholar
  16. 16.
    G.A. Brooks, T.D. Fahey, T.P. White, K.M. Baldwin, Exercise Physiology (Mountain View, 1996)Google Scholar
  17. 17.
    J.M. Brockway, Derivation of formulae used to calculate energy expenditure in man. Hum. Nutr. Clin. Nutr. 41, 463–471 (1987)Google Scholar
  18. 18.
    G.A. Cavagna, N.C. Heglund, C.R. Taylor, Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am. J. Phys. 233, R243–R261 (1977)Google Scholar
  19. 19.
    R. Kram, C.R. Taylor, Energetics of running: a new perspective. Nature 346, 265–267 (1990)CrossRefGoogle Scholar
  20. 20.
    R. Margaria, P. Cerretelli, P. Aghemo, G. Sassi, Energy cost of running. J. Appl. Physiol. 18, 367–370 (1963)CrossRefGoogle Scholar
  21. 21.
    R.C. Browning, R. Kram, Energetic cost and preferred speed of walking in obese vs. normal weight women. Obes. Res. 13, 891–899 (2005)CrossRefGoogle Scholar
  22. 22.
    V.A. Tucker, The energetic cost of moving about. Am. Sci. 63, 413–419 (1975)Google Scholar
  23. 23.
    S. Collins, A. Ruina, R. Tedrake, M. Wisse, Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085 (2005)CrossRefGoogle Scholar
  24. 24.
    B.R. Umberger, P.E. Martin, Mechanical power and efficiency of level walking with different stride rates. J. Exp. Biol. 210, 3255–3265 (2007)CrossRefGoogle Scholar
  25. 25.
    J.M. Donelan, R. Kram, A.D. Kuo, Mechanical and metabolic determinants of the preferred step width in human walking. Proc. Biol. Sci. 268, 1985–1992 (2001)CrossRefGoogle Scholar
  26. 26.
    R.L. Waters, S. Mulroy, The energy expenditure of normal and pathologic gait. Gait Posture 9, 207–231 (1999)CrossRefGoogle Scholar
  27. 27.
    N.H. Molen, R.H. Rozendal, W. Boon, Graphic representation of the relationship between oxygen-consumption and characteristics of normal gait of the human male. Proc. K. Ned. Akad. Wet. C 75, 305–314 (1972)Google Scholar
  28. 28.
    H. Elftman, Biomechanics of muscle with particular application to studies of gait. J. Bone Joint Surg. Am. 48, 363–377 (1966)CrossRefGoogle Scholar
  29. 29.
    E. Atzler, R. Herbst, Arbeitsphysiologische Studien. Pflügers Arch. 215, 291–328 (1927)CrossRefGoogle Scholar
  30. 30.
    H.J. Ralston, Energy-speed relation and optimal speed during level walking. Int. Z. Angew. Physiol. 17, 277–283 (1958)Google Scholar
  31. 31.
    A.E. Minetti, L.P. Ardigò, F. Saibene, The transition between walking and running in humans: metabolic and mechanical aspects at different gradients. Acta Physiol. Scand. 150, 315–323 (1994)CrossRefGoogle Scholar
  32. 32.
    A. Hreljac, Preferred and energetically optimal gait transition speeds in human locomotion. Med. Sci. Sports Exerc. 25, 1158–1162 (1993)CrossRefGoogle Scholar
  33. 33.
    A. Hreljac, Determinants of the gait transition speed during human locomotion: kinematic factors. J. Biomech. 28, 669–677 (1995)CrossRefGoogle Scholar
  34. 34.
    J.E. Bertram, A. Ruina, Multiple walking speed-frequency relations are predicted by constrained optimization. J. Theor. Biol. 209, 445–453 (2001)CrossRefGoogle Scholar
  35. 35.
    P.R. Cavanagh, K.R. Williams, The effect of stride length variation on oxygen uptake during distance running. Med. Sci. Sports Exerc. 14, 30–35 (1982)CrossRefGoogle Scholar
  36. 36.
    A.D. Kuo, J.M. Donelan, Dynamic principles of gait and their clinical implications. Phys. Ther. 90, 157–174 (2010)CrossRefGoogle Scholar
  37. 37.
    R.M. Alexander, Optimization of structure and movement of the legs of animals. J. Biomech. 26(Suppl 1), 1–6 (1993)CrossRefGoogle Scholar
  38. 38.
    J.A. Levine, Non-exercise activity thermogenesis (NEAT). Best Pract. Res. Clin. Endocrinol. Metab. 16, 679–702 (2002)CrossRefGoogle Scholar
  39. 39.
    N. Seethapathi, M. Srinivasan, The metabolic cost of changing walking speeds is significant, implies lower optimal speeds for shorter distances, and increases daily energy estimates. Biol. Lett. 11, 20150486 (2015)CrossRefGoogle Scholar
  40. 40.
    T. Garland Jr., Scaling the ecological cost of transport to body mass in terrestrial mammals. Am. Nat. 121, 571–587 (1983)CrossRefGoogle Scholar
  41. 41.
    D. DeJaeger, P.A. Willems, N.C. Heglund, The energy cost of walking in children. Pflügers Arch. 441, 538–543 (2001)CrossRefGoogle Scholar
  42. 42.
    J.C. Selinger, S.M. O’Connor, J.D. Wong, J.M. Donelan, Humans can continuously optimize energetic cost during walking. Curr. Biol. 25, 2452–2456 (2015)CrossRefGoogle Scholar
  43. 43.
    G.A. Cavagna, H. Thys, A. Zamboni, The sources of external work in level walking and running. J. Physiol. Lond. 262, 639–657 (1976)CrossRefGoogle Scholar
  44. 44.
    A.E. Minetti, R.M. Alexander, A theory of metabolic costs for bipedal gaits. J. Theor. Biol. 186, 467–476 (1997)CrossRefGoogle Scholar
  45. 45.
    R.M. Alexander, Energy-saving mechanisms in walking and running. J. Exp. Biol. 160, 55–69 (1991)Google Scholar
  46. 46.
    C.R. Lee, C.T. Farley, Determinants of the center of mass trajectory in human walking and running. J. Exp. Biol. 201, 2935–2944 (1998)Google Scholar
  47. 47.
    S. Mochon, T.A. McMahon, Ballistic walking. J. Biomech. 13, 49–57 (1980)zbMATHCrossRefGoogle Scholar
  48. 48.
    J.V. Basmajian, The human bicycle: an ultimate biological convenience. Orthop. Clin. North Am. 7, 1027–1029 (1976)Google Scholar
  49. 49.
    T.J. Roberts, E. Azizi, Flexible mechanisms: the diverse roles of biological springs in vertebrate movement. J. Exp. Biol. 214, 353–361 (2011)CrossRefGoogle Scholar
  50. 50.
    N.C. Heglund, M.A. Fedak, C.R. Taylor, G.A. Cavagna, Energetics and mechanics of terrestrial locomotion. IV. Total mechanical energy changes as a function of speed and body size in birds and mammals. J. Exp. Biol. 97, 57–66 (1982)Google Scholar
  51. 51.
    D.P. Ferris, M. Louie, C.T. Farley, Running in the real world: adjusting leg stiffness for different surfaces. Proc. Biol. Sci. 265, 989–994 (1998)CrossRefGoogle Scholar
  52. 52.
    H. Geyer, A. Seyfarth, R. Blickhan, Compliant leg behaviour explains basic dynamics of walking and running. Proc. Biol. Sci. 273, 2861–2867 (2006)CrossRefGoogle Scholar
  53. 53.
    T. McGeer, Passive dynamic walking. Int. J. Robot. Res. 9, 62–82 (1990)CrossRefGoogle Scholar
  54. 54.
    H. Geyer, A. Seyfarth, R. Blickhan, Spring-mass running: simple approximate solution and application to gait stability. J. Theor. Biol. 232, 315–328 (2005)MathSciNetCrossRefGoogle Scholar
  55. 55.
    M.H. Dickinson, C.T. Farley, R.J. Full, M.A. Koehl, R. Kram, S. Lehman, How animals move: an integrative view. Science 288, 100–106 (2000)CrossRefGoogle Scholar
  56. 56.
    T. McGeer, Passive bipedal running. Proc. Biol. Sci. 240, 107–134 (1990)CrossRefGoogle Scholar
  57. 57.
    M. Raibert, M. Chepponis, Running on four legs as though they were one. IEEE Robot Automat. 2, 70–82 (1986)CrossRefGoogle Scholar
  58. 58.
    M. Srinivasan, A. Ruina, Computer optimization of a minimal biped model discovers walking and running. Nature 439, 72–75 (2006)CrossRefGoogle Scholar
  59. 59.
    I. Hunter, G.A. Smith, Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high-intensity run. Eur. J. Appl. Physiol. 100, 653–661 (2007)CrossRefGoogle Scholar
  60. 60.
    J.L. Mayhew, Oxygen cost and energy expenditure of running in trained runners. Br. J. Sports Med. 11, 116–121 (1977)CrossRefGoogle Scholar
  61. 61.
    J.D. Ortega, C.T. Farley, Minimizing center of mass vertical movement increases metabolic cost in walking. J. Appl. Physiol. 99, 2099–2107 (2005)CrossRefGoogle Scholar
  62. 62.
    K.E. Gordon, D.P. Ferris, A.D. Kuo, Metabolic and mechanical energy costs of reducing vertical center of mass movement during gait. Arch. Phys. Med. Rehabil. 90, 136–144 (2009)CrossRefGoogle Scholar
  63. 63.
    W.O. Fenn, Work against gravity and work due to velocity changes in running. Am. J. Phys. 93, 433–462 (1930)Google Scholar
  64. 64.
    W.O. Fenn, The relationship between the work performed and the energy liberated in muscular contraction. J. Physiol. 58, 373–395 (1924)CrossRefGoogle Scholar
  65. 65.
    A.D. Kuo, A simple model of bipedal walking predicts the preferred speed-step length relationship. J. Biomech. Eng. 123, 264–269 (2001)CrossRefGoogle Scholar
  66. 66.
    J.M. Donelan, R. Kram, A.D. Kuo, Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. J. Exp. Biol. 205, 3717–3727 (2002)Google Scholar
  67. 67.
    A. Ruina, J.E.A. Bertram, M. Srinivasan, A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. J. Theor. Biol. 237, 170–192 (2005)MathSciNetCrossRefGoogle Scholar
  68. 68.
    J.M. Donelan, R. Kram, A.D. Kuo, Simultaneous positive and negative external mechanical work in human walking. J. Biomech. 35, 117–124 (2002)CrossRefGoogle Scholar
  69. 69.
    A.D. Kuo, J.M. Donelan, A. Ruina, Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exerc. Sport Sci. Rev. 33, 88–97 (2005)CrossRefGoogle Scholar
  70. 70.
    C.H. Soo, J.M. Donelan, Mechanics and energetics of step-to-step transitions isolated from human walking. J. Exp. Biol. 213, 4265–4271 (2010)CrossRefGoogle Scholar
  71. 71.
    D. Wezenberg, A.G. Cutti, A. Bruno, H. Houdijk, Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-to-step transition cost. J. Rehabil. Res. Dev. 51, 1579–1590 (2014)CrossRefGoogle Scholar
  72. 72.
    R.L. Waters, J. Perry, D. Antonelli, H. Hislop, Energy cost of walking of amputees: the influence of level of amputation. J. Bone Joint Surg. Am. 58, 42–46 (1976)CrossRefGoogle Scholar
  73. 73.
    J.M. Caputo, S.H. Collins, Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking. Sci. Rep. 4(7213) (2014)Google Scholar
  74. 74.
    C.N. Maganaris, J.P. Paul, Tensile properties of the in vivo human gastrocnemius tendon. J. Biomech. 35, 1639–1646 (2002)CrossRefGoogle Scholar
  75. 75.
    A.A. Biewener, T.J. Roberts, Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective. Exerc. Sport Sci. Rev. 28, 99 (2000)Google Scholar
  76. 76.
    T.J. Roberts, R.L. Marsh, P.G. Weyand, C.R. Taylor, Muscular force in running turkeys: the economy of minimizing work. Science 275, 1113–1115 (1997)CrossRefGoogle Scholar
  77. 77.
    G.A. Lichtwark, K. Bougoulias, A.M. Wilson, Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J. Biomech. 40, 157–164 (2007)CrossRefGoogle Scholar
  78. 78.
    A. Lai, G.A. Lichtwark, A.G. Schache, Y.-C. Lin, N.A.T. Brown, M.G. Pandy, In vivo behavior of the human soleus muscle with increasing walking and running speeds. J. Appl. Physiol. 118, 1266–1275 (2015)CrossRefGoogle Scholar
  79. 79.
    K. Hilber, Y.B. Sun, M. Irving, Effects of sarcomere length and temperature on the rate of ATP utilisation by rabbit psoas muscle fibres. J. Physiol. Lond. 531, 771–780 (2001)CrossRefGoogle Scholar
  80. 80.
    M.C. Hogan, E. Ingham, S.S. Kurdak, Contraction duration affects metabolic energy cost and fatigue in skeletal muscle. Am. J. Phys. 274, E397–E402 (1998)Google Scholar
  81. 81.
    J.A. Rall, Energetic aspects of skeletal muscle contraction: implications of fiber types. Exerc. Sport Sci. Rev. 13, 33–74 (1985)Google Scholar
  82. 82.
    D. Chasiotis, M. Bergström, E. Hultman, ATP utilization and force during intermittent and continuous muscle contractions. J. Appl. Physiol. 63, 167–174 (1987)CrossRefGoogle Scholar
  83. 83.
    M. Bergström, E. Hultman, Energy cost and fatigue during intermittent electrical stimulation of human skeletal muscle. J. Appl. Physiol. 65, 1500–1505 (1988)CrossRefGoogle Scholar
  84. 84.
    R.L. Marsh, D.J. Ellerby, J.A. Carr, H.T. Henry, C.I. Buchanan, Partitioning the energetics of walking and running: swinging the limbs is expensive. Science 303, 80–83 (2004)CrossRefGoogle Scholar
  85. 85.
    J.R. Modica, R. Kram, Metabolic energy and muscular activity required for leg swing in running. J. Appl. Physiol. 98, 2126–2131 (2005)CrossRefGoogle Scholar
  86. 86.
    C.T. Farley, O. González, Leg stiffness and stride frequency in human running. J. Biomech. 29, 181–186 (1996)CrossRefGoogle Scholar
  87. 87.
    W. Platzer, Color Atlas of Human Anatomy Locomotor System. Color Atlas of Human Anatomy Locomotor System, 5th edn. (Thieme, 2004)Google Scholar
  88. 88.
    P.G. Adamczyk, S.H. Collins, A.D. Kuo, The advantages of a rolling foot in human walking. J. Exp. Biol. 209, 3953–3963 (2006)CrossRefGoogle Scholar
  89. 89.
    P.G. Weyand, D.B. Sternlight, M.J. Bellizzi, S. Wright, Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J. Appl. Physiol. 89, 1991–1999 (2000)CrossRefGoogle Scholar
  90. 90.
    R.F. Ker, M.B. Bennett, S.R. Bibby, R.C. Kester, R.M. Alexander, The spring in the arch of the human foot. Nature 325, 147–149 (1987)CrossRefGoogle Scholar
  91. 91.
    S.S.M. Lee, S.J. Piazza, Built for speed: musculoskeletal structure and sprinting ability. J. Exp. Biol. 212, 3700–3707 (2009)CrossRefGoogle Scholar
  92. 92.
    M.N. Scholz, M.F. Bobbert, A.J. van Soest, J.R. Clark, J. van Heerden, Running biomechanics: shorter heels, better economy. J. Exp. Biol. 211, 3266–3271 (2008)CrossRefGoogle Scholar
  93. 93.
    S.N. Robinovitch, S.L. Evans, J. Minns, A.C. Laing, P. Kannus, P.A. Cripton, S. Derler, S.J. Birge, D. Plant, I.D. Cameron, D.P. Kiel, J. Howland, K. Khan, J.B. Lauritzen, Hip protectors: recommendations for biomechanical testing – an international consensus statement (part I), in Osteoporos International, (Springer, 2009), pp. 1977–1988Google Scholar
  94. 94.
    L. Schwickert, C. Becker, U. Lindemann, C. Maréchal, A. Bourke, L. Chiari, J.L. Helbostad, W. Zijlstra, K. Aminian, C. Todd, S. Bandinelli, J. Klenk, FARSEEING Consortium and the FARSEEING Meta Database Consensus Group, Fall detection with body-worn sensors: a systematic review. Z. Gerontol. Geriatr. 46, 706–719 (2013)CrossRefGoogle Scholar
  95. 95.
    S. Bohm, L. Mademli, F. Mersmann, A. Arampatzis, Predictive and reactive locomotor adaptability in healthy elderly: a systematic review and meta-analysis. Sports Med. 45, 1759–1777 (2015)CrossRefGoogle Scholar
  96. 96.
    D. Burke, S.C. Gandevia, B. McKeon, The afferent volleys responsible for spinal proprioceptive reflexes in man. J. Physiol. Lond. 339, 535–552 (1983)CrossRefGoogle Scholar
  97. 97.
    C.D. Marsden, P.A. Merton, H.B. Morton, Stretch reflex and servo action in a variety of human muscles. J. Physiol. Lond. 259, 531–560 (1976)CrossRefGoogle Scholar
  98. 98.
    V. Dietz, D. Schmidtbleicher, J. Noth, Neuronal mechanisms of human locomotion. J. Neurophysiol. 42, 1212–1222 (1979)CrossRefGoogle Scholar
  99. 99.
    S. Grillner, The role of muscle stiffness in meeting the changing postural and locomotor requirements for force development by the ankle extensors. Acta Physiol. Scand. 86, 92–108 (1972)CrossRefGoogle Scholar
  100. 100.
    A.D. Craig, How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3, 655–666 (2002)CrossRefGoogle Scholar
  101. 101.
    N. Hogan, D. Sternad, Dynamic primitives of motor behavior. Biol. Cybern. 106, 727–739 (2012)MathSciNetCrossRefGoogle Scholar
  102. 102.
    H.L. More, J.R. Hutchinson, D.F. Collins, D.J. Weber, S.K.H. Aung, J.M. Donelan, Scaling of sensorimotor control in terrestrial mammals. Proc. Biol. Sci. 277, 3563–3568 (2010)CrossRefGoogle Scholar
  103. 103.
    A. Rossi, B. Decchi, Flexibility of lower limb reflex responses to painful cutaneous stimulation in standing humans: evidence of load-dependent modulation. J. Physiol. Lond. 481(Pt 2), 521–532 (1994)CrossRefGoogle Scholar
  104. 104.
    A. Prochazka, Sensorimotor gain control: a basic strategy of motor systems? Prog. Neurobiol. 33, 281–307 (1989)CrossRefGoogle Scholar
  105. 105.
    A. Prochazka, F. Clarac, G.E. Loeb, J.C. Rothwell, J.R. Wolpaw, What do reflex and voluntary mean? Modern views on an ancient debate. Exp. Brain Res. 130, 417–432 (2000)CrossRefGoogle Scholar
  106. 106.
    E.P. Zehr, R.B. Stein, What functions do reflexes serve during human locomotion? Prog. Neurobiol. 58, 185–205 (1999)CrossRefGoogle Scholar
  107. 107.
    V. Dietz, G. Colombo, Influence of body load on the gait pattern in Parkinson's disease. Mov. Disord. 13, 255–261 (1998)CrossRefGoogle Scholar
  108. 108.
    T. Sinkjaer, J.B. Andersen, M. Ladouceur, L.O. Christensen, J.B. Nielsen, Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. J. Physiol. (Lond) 523 Pt 3, 817–827 (2000)CrossRefGoogle Scholar
  109. 109.
    V. Dietz, S.J. Harkema, Locomotor activity in spinal cord-injured persons. J. Appl. Physiol. 96, 1954–1960 (2004)CrossRefGoogle Scholar
  110. 110.
    V. Dietz, A. Gollhofer, M. Kleiber, M. Trippel, Regulation of bipedal stance: dependency on “load” receptors. Exp. Brain Res. 89, 229–231 (1992)CrossRefGoogle Scholar
  111. 111.
    H.W. Van de Crommert, M. Faist, W. Berger, J. Duysens, Biceps femoris tendon jerk reflexes are enhanced at the end of the swing phase in humans. Brain Res. 734, 341–344 (1996)CrossRefGoogle Scholar
  112. 112.
    H. Geyer, H. Herr, A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 263–273 (2010)CrossRefGoogle Scholar
  113. 113.
    S. Song, H. Geyer, A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. J. Physiol. Lond. 593, 3493–3511 (2015)CrossRefGoogle Scholar
  114. 114.
    I.E. Brown, G.E. Loeb, A reductionist approach to creating and using neuromusculoskeletal models, in Biomechanics and Neural Control of Posture and Movement, (Springer, New York, 2000), pp. 148–163CrossRefGoogle Scholar
  115. 115.
    A.J. van Soest, M.F. Bobbert, The contribution of muscle properties in the control of explosive movements. Biol. Cybern. 69, 195–204 (1993)CrossRefGoogle Scholar
  116. 116.
    M.M. van der Krogt, W.W. de Graaf, C.T. Farley, C.T. Moritz, L.J. Richard Casius, M.F. Bobbert, Robust passive dynamics of the musculoskeletal system compensate for unexpected surface changes during human hopping. J. Appl. Physiol. 107, 801–808 (2009)CrossRefGoogle Scholar
  117. 117.
    C.T. Moritz, C.T. Farley, Passive dynamics change leg mechanics for an unexpected surface during human hopping. J. Appl. Physiol. 97, 1313–1322 (2004)CrossRefGoogle Scholar
  118. 118.
    C.T. Moritz, C.T. Farley, Human hoppers compensate for simultaneous changes in surface compression and damping. J. Biomech. 39, 1030–1038 (2006)CrossRefGoogle Scholar
  119. 119.
    C.T. Moritz, C.T. Farley, Human hopping on very soft elastic surfaces: implications for muscle pre-stretch and elastic energy storage in locomotion. J. Exp. Biol. 208, 939–949 (2005)CrossRefGoogle Scholar
  120. 120.
    D.P. Ferris, K. Liang, C.T. Farley, Runners adjust leg stiffness for their first step on a new running surface. J. Biomech. 32, 787–794 (1999)CrossRefGoogle Scholar
  121. 121.
    M. Garcia, A. Chatterjee, A. Ruina, M. Coleman, The simplest walking model: stability, complexity, and scaling. J. Biomech. Eng. 120, 281–288 (1998)CrossRefGoogle Scholar
  122. 122.
    A.L. Schwab, M. Wisse, Basin of attraction of the simplest walking model. Proc. ASME Des. Eng. 6, 531–539 (2001)Google Scholar
  123. 123.
    C.E. Bauby, A.D. Kuo, Active control of lateral balance in human walking. J. Biomech. 33, 1433–1440 (2000)CrossRefGoogle Scholar
  124. 124.
    S.M. O’Connor, A.D. Kuo, Direction-dependent control of balance during walking and standing. J. Neurophysiol. 102, 1411–1419 (2009)CrossRefGoogle Scholar
  125. 125.
    A.D. Kuo, Stabilization of lateral motion in passive dynamic walking. Int. J. Robot. Res. 18, 917–930 (1999)CrossRefGoogle Scholar
  126. 126.
    T. Libby, T.Y. Moore, E. Chang-Siu, D. Li, D.J. Cohen, A. Jusufi, R.J. Full, Tail-assisted pitch control in lizards, robots and dinosaurs. Nature 481, 181–184 (2012)CrossRefGoogle Scholar
  127. 127.
    M. Pijnappels, I. Kingma, D. Wezenberg, G. Reurink, J.H. van Dieën, Armed against falls: the contribution of arm movements to balance recovery after tripping. Exp. Brain Res. 201, 689–699 (2010)CrossRefGoogle Scholar
  128. 128.
    S.M. O’Connor, X. HZ, A.D. Kuo, Energetic cost of walking with increased step variability. Gait Posture 36, 102–107 (2012)CrossRefGoogle Scholar
  129. 129.
    J.C. Dean, N.B. Alexander, A.D. Kuo, The effect of lateral stabilization on walking in young and old adults. I.E.E.E. Trans. Biomed. Eng. 54, 1919–1926 (2007)CrossRefGoogle Scholar
  130. 130.
    T. Ijmker, H. Houdijk, C.J.C. Lamoth, P.J. Beek, L.H.V. van der Woude, Energy cost of balance control during walking decreases with external stabilizer stiffness independent of walking speed. J. Biomech. 46, 2109–2114 (2013)CrossRefGoogle Scholar
  131. 131.
    P. Zaytsev, S.J. Hasaneini, A. Ruina, Two steps is enough: no need to plan far ahead for walking balance, in IEEE International Conference on Robotics and Automation, (IEEE, 2015), pp. 6295–6300Google Scholar
  132. 132.
    A.L. Hof, S.M. Vermerris, W.A. Gjaltema, Balance responses to lateral perturbations in human treadmill walking. J. Exp. Biol. 213, 2655–2664 (2010)CrossRefGoogle Scholar
  133. 133.
    P.F. Tang, M.H. Woollacott, R.K. Chong, Control of reactive balance adjustments in perturbed human walking: roles of proximal and distal postural muscle activity. Exp. Brain Res. 119, 141–152 (1998)CrossRefGoogle Scholar
  134. 134.
    A.E. Patla, J.N. Vickers, Where and when do we look as we approach and step over an obstacle in the travel path? Neuroreport 8, 3661–3665 (1997)CrossRefGoogle Scholar
  135. 135.
    J. Matthis, S. Barton, B. Fajen, Visual control of precise foot placement when walking over complex terrain. J. Vis. 13, 121–121 (2013)CrossRefGoogle Scholar
  136. 136.
    M. Raibert, Dynamic Legged Locomotion, 1st edn. (MIT Press, 1987)Google Scholar
  137. 137.
    A. Seyfarth, H. Geyer, H. Herr, Swing-leg retraction: a simple control model for stable running. J. Exp. Biol. 206, 2547–2555 (2003)CrossRefGoogle Scholar
  138. 138.
    M. Haberland, J. Karssen, S. Kim, The effect of swing leg retraction on running energy efficiency, in IEEE International Conference on Robotics and Automation, (Shanghai, 2011)Google Scholar
  139. 139.
    M. Haberland, J.G.D. Karssen, S. Kim, M. Wisse, The effect of swing leg retraction on running energy efficiency, in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), (IEEE, n.d.), pp. 3957–3962Google Scholar
  140. 140.
    J.G.D. Karssen, M. Haberland, M. Wisse, S. Kim, The effects of swing-leg retraction on running performance: analysis, simulation, and experiment. Robotica 33, 2137–2155 (2015)CrossRefGoogle Scholar
  141. 141.
    M.A. Daley, Biomechanics: running over uneven terrain is a no-brainer. Curr. Biol. 18, R1064–R1066 (2008)CrossRefGoogle Scholar
  142. 142.
    S. Grimmer, M. Ernst, M. Günther, R. Blickhan, Running on uneven ground: leg adjustment to vertical steps and self-stability. J. Exp. Biol. 211, 2989–3000 (2008)CrossRefGoogle Scholar
  143. 143.
    T.A. McMahon, G.C. Cheng, The mechanics of running: how does stiffness couple with speed? J. Biomech. 23, 65–78 (1990)CrossRefGoogle Scholar
  144. 144.
    C.T. Farley, D.P. Ferris, Biomechanics of walking and running: center of mass movements to muscle action. Exerc. Sport Sci. Rev. 26, 253–285 (1998)CrossRefGoogle Scholar
  145. 145.
    M. Raibert, K. Blankespoor, G. Nelson, R. Playter, Bigdog, the rough-terrain quadruped robot, in Proceedings of the 17th IFAC World Congress, (2008)Google Scholar
  146. 146.
    J.W. Hurst, J.E. Chestnutt, A.A. Rizzi, Design and philosophy of the bimasc, a highly dynamic biped, in IEEE Int Conf Robot Autom, (Rome, 2007), pp. 1863–1868Google Scholar
  147. 147.
    P.A. Bhounsule, J. Cortell, A. Ruina, Design and control of ranger: an energy-efficient, dynamic walking robot, in Adaptive Mobile Robotics, (World Scientific, 2012), pp. 441–448Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Human Performance Laboratory, Department of KinesiologyUniversity of CalgaryCalgaryCanada
  2. 2.Department of Biomedical Physiology and KinesiologySimon Fraser UniversityBurnabyCanada

Personalised recommendations