Dynamic Formulations and Computational Algorithms

  • Hubert GattringerEmail author
  • Andreas Mueller
Reference work entry


Humanoids are complex dynamic systems operating in partially uncertain environments. Reliable control of humanoid robots is only possible with model-based control schemes. Also the generation of walking patterns that ensures the overall stability and respects technological limitations of the mechanical setup requires a nonlinear mechanical model, i.e., the equations of motions (EoM). This chapter addresses the derivation of the EoM in a way that allows for a systematic generation of the EoM and a computationally efficient evaluation at the same time. Starting with the description of the kinematic topology of a multibody system (MBS), a recursive formulation of the MBS kinematics is introduced. A synthetic approach to the EoM generation is presented. The latter departs from the Newton-Euler equations of the individual bodies of the MBS. The formulation is extended to account for subsystems representing the modules of the humanoid. The EoM are complemented by the contact forces due to the contact of feet and ground. In order to facilitate the actual evaluation of the EoM on the controller hardware of the humanoid robot, a recursive \(O\left ( n\right ) \) inverse dynamics formulation is presented. Also presented is a recursive \(O\left ( n\right ) \) forward dynamics algorithm making use of the submodule modeling. The latter is necessary for the off-line dynamics simulation with the humanoid design study.


  1. 1.
    J. Angeles, Fundamentals of Robotic Mechanical Systems (Springer, New York, 2003)Google Scholar
  2. 2.
    H. Brandl, R. Johanni, M. Otter, A very efficient algorithm for the simulation of robots and similar multibody systems without inversion of the mass matrix, in Proceedings of the IFAC International Symposium on Theory of Robots, 1986, pp. 365–370Google Scholar
  3. 3.
    H. Bremer, Elastic Multibody Dynamics: A Direct Ritz Approach (Springer, Berlin, 2008)CrossRefGoogle Scholar
  4. 4.
    H. Bremer, F. Pfeiffer, Elastische Mehrkörpersysteme (Teubner Studienbücher, Stuttgart, 1992)Google Scholar
  5. 5.
    T. Buschmann, S. Lohmeier, H. Ulbrich, F. Pfeiffer, Modeling and simulation of a biped robot, in Proceedings of the 2006 IEEE International Conference of Intelligent Robots and Systems, May 2006Google Scholar
  6. 6.
    T. Buschmann, M. Schwienbacher, V. Favot, A. Ewald, H. Ulbrich, Dynamics and control of the biped robot lola. Multibody System Dynamics, Robotics and Control (Springer, Vienna, 2012)Google Scholar
  7. 7.
    R. Featherstone, Robot Dynamics Algorithms (Kluwer, Boston, 1987)CrossRefGoogle Scholar
  8. 8.
    H. Gattringer, Starr-elastische Robotersysteme (Theorie und Anwendungen) (Springer, Berlin Heidelberg, 2011)CrossRefGoogle Scholar
  9. 9.
    H. Gattringer, H. Bremer, M. Kastner, Efficient dynamic modeling for rigid multi-body systems with contact and impact. Acta Mech. 219, 111–128 (2011)CrossRefGoogle Scholar
  10. 10.
    J.M. Hollerbach, A recursive lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. IEEE Trans. Syst. Man Cybern. SMC-10(11), 730–736 (1980)MathSciNetCrossRefGoogle Scholar
  11. 11.
    R.L. Huston, Useful procedures in multibody dynamics, in Proceedings of the IUTAM/IFToMM Symposium on Dynamics of Multibody Systems, ed. by G. Bianchi, W. Schielen (Springer, Udine, 1985)Google Scholar
  12. 12.
    W. Khalil, Dynamic modeling robots using recursive newton-euler techniques, in Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics, vol. 2, ed. by J. Cetto, J. Filipe, J. Ferrier (SciTePress, 2010), pp. 19–31Google Scholar
  13. 13.
    J.Y.S. Luh, M.W. Walker, R.P.C. Paul, On-line computational scheme for mechanical manipulators. ASME J. Dyn. Syst. Meas. Control. 102, 69–76 (1980)MathSciNetCrossRefGoogle Scholar
  14. 14.
    P. Maisser, Analytical dynamics of multibody systems. Comput. Methods Appl. Mech. Eng. 91, 1391–1396 (1991)CrossRefGoogle Scholar
  15. 15.
    P. Maisser, Differential-geometric methods in multibody dynamics. Nonlinear Anal. Theory Methods Appl. 30, 5127–5133 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    J. Mayr, A. Reiter, H. Gattringer, A. Müller, Exploiting the equations of motion for biped robot control with enhanced stability, in Multibody Dynamics, ed. by J.M. Font-Llagunes (Springer, Cham, 2016)Google Scholar
  17. 17.
    A. Mohan, S.K. Saha, A recursive, numerically stable, and efficient simulation algorithm for serial robots. Multibody Sys. Dyn. 17, 291–319 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Müller, Forward dynamics of variable topology mechanisms, in Proceedings of the IMechE Part K: J Multi-body Dynamics, online 10 Mar 2016Google Scholar
  19. 19.
    B. Oberhuber, Ein Beitrag zur modularen Modellierung und Regelung Redundanter Robotersysteme (Trauner Verlag, Linz, 2013)Google Scholar
  20. 20.
    J.G. Papastavridis, Analytical Mechanics (Oxford University Press, Oxford, 2002)Google Scholar
  21. 21.
    F. Pfeiffer, Mechanical System Dynamics (Springer, Berlin Heidelberg, 2008)Google Scholar
  22. 22.
    F. Pfeiffer, Ch. Glocker (eds.), Multibody dynamics with unilateral contacts, in IUTAM Symposium on Unilateral Multibody Contacts, Solid Mechanics and Its Applications, vol. 72 (Springer, 1999)Google Scholar
  23. 23.
    F. Pfeiffer, C. Glocker, Multibody Dynamics with Unilateral Contacts (Springer, Wien/New York, 2000)Google Scholar
  24. 24.
    G. Rodriguez, K. Kreutz-Delgado, Spatial operator factorization and inversion of the manipulator mass matrix. IEEE Trans. Robot. Autom. 8(1), 65–75 (1992)CrossRefGoogle Scholar
  25. 25.
    W. Schiehlen (ed.), Multibody Systems Handbook (Springer, Berlin/Heidelberg, 1990)zbMATHGoogle Scholar
  26. 26.
    R. Schwertassek, O. Wallrapp, Dynamik Flexibler Mehrkörpersysteme (Vieweg, Braunschweig Wiesbaden, 1999)CrossRefGoogle Scholar
  27. 27.
    A.A. Shabana, Dynamics of Multibody Systems (Cambridge University Press, New York, 2013)Google Scholar
  28. 28.
    B. Siciliano, O. Khatib (eds.), Handbook of Robotics (Springer, Berlin/Heidelberg, 2008)Google Scholar
  29. 29.
    A.F. Vereshchagin, Computer simulation of complicated mechanisms of robot manimulators. Eng. Cybern. 6, 65–70 (1974)Google Scholar
  30. 30.
    M. Vukobratovic, V. Potkonjak, Contribution of the forming of computer methods for automatic modelling of spatial mechanisms motions. Mech. Mach. Theory 14(3), 179–188 (1979)CrossRefGoogle Scholar
  31. 31.
    M. Vukobratović, J. Stepanenko, On the stability of anthropomorphic systems. Math. Biosci. 15, 1–37 (1972)CrossRefGoogle Scholar
  32. 32.
    M.W. Walker, D.E. Orin, Efficient dynamic computer simulation of robotic mechanisms. ASME J. Dyn. Syst. Meas. Control. 104, 205–211 (1982)CrossRefGoogle Scholar
  33. 33.
    J. Wittenburg, Dynamics of Multibody Systems (Springer, Berlin, 2008)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of RoboticsJohannes Kepler UniversityLinzAustria

Personalised recommendations