Advertisement

Feedback Control of Inverted Pendulums

  • Shuuji Kajita
Reference work entry

Abstract

Modeling and control of a humanoid robot as a simple inverted pendulum is a common approach. On the other hand, a real walking robot has a floating rigid body dynamics under the unidirectional force constraints. This discrepancy can cause many “unexpected phenomenons” in experiments of real walking robots. In this chapter, we examine this problem by using a simple model and show a practical technique to solve it.

References

  1. 1.
    B. Brogliato, P. Orhant, Contact stability analysis of a one degree-of-freedom robot. Dyn. Control 8, 37–53 (1998)Google Scholar
  2. 2.
    J. Englsberger, C. Ott, M.A. Roa, A. Albu-Schäffer, G. Hirzinger, Bipedal walking control based on capture point dynamics, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2011)Google Scholar
  3. 3.
    S. Feng, X. Xinjilefu, W. Huang, C.G. Atkeson, 3D walking based on online optimization, in IEEE-RAS International Conference on Humanoid Robots, 2013, pp. 21–27Google Scholar
  4. 4.
    Y. Fujimoto, S. Kajita, A biped walking robot based on position control (in Japanese). J. Robot. Soc. Jpn. 30(4), 344–349 (2012)CrossRefGoogle Scholar
  5. 5.
    A. Goswami, Posturel stability of biped robots and the Foot-Rotation Indicator(FRI) point. Int. J. Robot. Res. 18(6), 523–533 (1999)CrossRefGoogle Scholar
  6. 6.
    S.-H. Hyon, Compliant terrain adaptation for biped humanoids without measureing ground surface and contact forces. IEEE Trans. Robot. 25(1), 171–178 (2009)CrossRefGoogle Scholar
  7. 7.
    S. Kajita, K. Yokoi, M. Saigo, K. Tanie, Balancing a humanoid robot using backdrive concerned torque control and direct angular momentum feedback, in IEEE International Conference on Robotics and Automation (ICRA2001), 2001, pp. 3376–3382Google Scholar
  8. 8.
    S. Kajita, M. Morisawa, K. Miura, S. Nakaoka, K. Harada, K. Kaneko, F. Kanehiro, K. Yokoi, Biped walking stabilization based on linear inverted pendulum tracking, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2010), 2010, pp. 4489–4496Google Scholar
  9. 9.
    K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka, S. Kajita, Cybernetic human HRP-4C, in Proceedings of 9th IEEE-RAS International Conference on Humanoid Robots, 2009, pp. 7–14Google Scholar
  10. 10.
    K. Kaneko, F. Kanehiro, M. Morisawa, T. Tsuji, K. Miura, S. Nakaoka, S. Kajita, K. Yokoi, Hardware improvement of cybernetic human HRP-4C towards entertainment use, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 4392–4399Google Scholar
  11. 11.
    J.-H. Kim, J.-H. Oh, Walking control of the humanoid platform KHR-1 based on torque feedback control, in IEEE International Conference on Robotics and Automation (ICRA2004), 2004, pp. 623–628Google Scholar
  12. 12.
    S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen, P. Marion, R. Tedrake, Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Auton. Robot. 40(3), 429–455 (2016)CrossRefGoogle Scholar
  13. 13.
    K. Miura, M. Morisawa, F. Kanehiro, S. Kajita, K. Kaneko, K. Yokoi, Human-like walking with toe supporting for humanoids, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2011), 2011, pp. 4428–4435Google Scholar
  14. 14.
    N. Napoleon, H. Izu, S. Nakaura, M. Sampei, An analysis of ZMP control problem of humanoid robot with compliances in sole of the foot, in Proceedings of the 16th IFAC World Congress, 2005Google Scholar
  15. 15.
    J. Pratt, J. Carff, S. Drakunov, A. Goswami, Capture point: a step toward humanoid push recovery, in Proceedings of IEEE-RAS International Conference on Humanoid Robots (Humanoids2006), 2006, pp. 200–207Google Scholar
  16. 16.
    T. Sugihara, Standing stabilizability and stepping maneuver in planar bipedalism based on the best COM-ZMP regulator, in IEEE International Conference on Robotics and Automation (ICRA2009), 2009, pp. 1966–1971Google Scholar
  17. 17.
    M. Vukobratović, J. Stepanenko, On the stability of anthropomorphic systems. Math. Biosci. 15, 1–37 (1972)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Humanoid Research GroupIntelligent Systems Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations