Principles Underlying Locomotor Trajectory Formation

  • Manish SreenivasaEmail author
  • Jean-Paul Laumond
  • Katja Mombaur
  • Alain Berthoz
Reference work entry


Locomotion trajectories for anthropomorphic systems are the result of a complex interplay between perception of the goal, the environment, and physical characteristics. In humanoid robots, as in humans, perceptual requirements may arise due to the need to look at the walking goal or grasp target. Behaviors arising from physical characteristics are, for example, a preference to walk forward. This chapter provides the reader with comprehensive knowledge and tools to answer the question: What path should a humanoid robot take to reach a goal? We do this by introducing some models of locomotion trajectory formation and discussing their merits with reference to ease of implementation, movement realism, and the general link to humanoid perception. We also recall some of the major results related to locomotor trajectories coming from human movement research and discuss their potential impacts for humanoid robotics. Finally, we summarize studies where locomotion trajectory models have been implemented on the full-size humanoid robot HRP-2.


  1. 1.
    G. Arechavaleta, J.P. Laumond, H. Hicheur, A. Berthoz, On the nonholonomic nature of human locomotion. Auton. Robot. 25, 25–35 (2008)CrossRefGoogle Scholar
  2. 2.
    V. Belmonti, G. Cioni, A. Berthoz, Development of anticipatory orienting strategies and trajectory formation in goal-oriented locomotion. Exp. Brain Res. 227(1), 131–147 (2013)CrossRefGoogle Scholar
  3. 3.
    D. Bernardin, H. Kadone, D. Bennequin, T. Sugar, M. Zaoui, A. Berthoz, Gaze anticipation during human locomotion. Exp. Brain Res. 223(1), 65–78 (2012)CrossRefGoogle Scholar
  4. 4.
    K. Bouyarmane, A. Kheddar, Multi-contact stances planning for multiple agents, in IEEE International Conference on Robotics and Automation, 2011Google Scholar
  5. 5.
    T. Bretl, S. Rock, J. Latombe, Motion planning for a three-limbed climbing robot in vertical natural terrain, in IEEE International Conference on Robotics and Automation, 2003Google Scholar
  6. 6.
    J. Chestnutt, P. Michel, K. Nishiwaki, J. Kuffner, S. Kagami, An intelligent joystick for biped control, in IEEE International Conference on Robotics and Automation, 2006, pp. 860–865Google Scholar
  7. 7.
    G. Courtine, M. Schieppati, Human walking along a curved path. I. Body trajectory, segment orientation and the effect of vision. Eur. J. Neurosci. 18, 177–190 (2003)CrossRefGoogle Scholar
  8. 8.
    J. Diedrichsen, R. Shadmehr, R. Ivry, The coordination of movement: optimal feedback control and beyond. Trends Cogn. Sci. 14(1), 31–39 (2009)CrossRefGoogle Scholar
  9. 9.
    C. Esteves, G. Arechavaleta, J. Pettré, J. Laumond, Animation planning for virtual characters cooperation. ACM Trans. Graph. 25(2), 319–339 (2006)CrossRefGoogle Scholar
  10. 10.
    B.R. Fajen, W.H. Warren, Behavioral dynamics of steering, obstacle avoidance, and route selection. J. Exp. Psychol. Hum. Percept. Perform. 29(2), 343–362 (2003)Google Scholar
  11. 11.
    B.R. Fajen, W.H. Warren, S. Temizer, L.P. Kaelbling, A dynamical model of visually-guided steering, obstacle avoidance, and route selection. Int. J. Comp. Vis. 54(1/2), 13–34 (2003)Google Scholar
  12. 12.
    T. Flash, N. Hogan, The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703 (1985)CrossRefGoogle Scholar
  13. 13.
    K. Friston, What is optimal about motor control? Neuron 72, 488–498 (2011)CrossRefGoogle Scholar
  14. 14.
    J.J. Gibson, Visually controlled locomotion and visual orientation in animals*. Br. J. Psychol. 49(3), 182–194 (1958)CrossRefGoogle Scholar
  15. 15.
    R. Grasso, S. Glasauer, Y. Takei, A. Berthoz, The predictive brain: anticipatory control of head direction for the steering of locomotion. NeuroReport 7, 1170–1174 (1996)CrossRefGoogle Scholar
  16. 16.
    K. Hauser, T. Bretl, K. Harada, J. Latombe, Using motion primitives in probabilistic sample-based planning for humanoid robots, in Workshop on Algorithmic Foundations of Robotic (WAFR), 2006Google Scholar
  17. 17.
    K. Hauser, T. Bretl, J. Latombe, K. Harada, B. Wilcox, Motion planning for legged robots on varied terrain. Int. J. .Robot. Res. 27(11–12):1325–1349 (2008)CrossRefGoogle Scholar
  18. 18.
    H. Hicheur, S. Vieilledent, A. Berthoz, Head motion in humans alternating between straight and curved walking path: combination of stabilizing and anticipatory orienting mechanisms. Neurosci. Lett. 383, 87–92 (2005)CrossRefGoogle Scholar
  19. 19.
    H. Hicheur, Q.C. Pham, G. Arechavaleta, J.P. Laumond, A. Berthoz, The formation of trajectories during goal-oriented locomotion in humans I. A stereotyped behavior. Eur. J. Neurosci. 26(8), 2376–2390 (2007)CrossRefGoogle Scholar
  20. 20.
    N. Hogan, An organizing principle for a class of voluntary movements. J. Neurosci. 4, 2745–2754 (1984)CrossRefGoogle Scholar
  21. 21.
    M. Horn, M. Sreenivasa, K. Mombaur, Optimization model of the predictive head direction for humanoid robots, in IEEE-RAS International Conference on Humanoid Robots, 2014Google Scholar
  22. 22.
    K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi, T. Isozumi, Humanoid robot hrp-2, in International Conference on Robotics and Automation, 2004Google Scholar
  23. 23.
    O. Kanoun, E. Yoshida, J.P. Laumond, Planning foot placements for humanoid robots: a problem of inverse kinematics. Int. J. Robot. Res. (2011)Google Scholar
  24. 24.
    M.J. Kearns, W.H. Warren, A.P. Duchon, M.J. Tarr, Path integration from optic flow and body senses in a homing task. Perception 31, 349–374 (2002)CrossRefGoogle Scholar
  25. 25.
    J. Kuffner, J. Latombe, Fast synthetic vision, memory, and learning for virtual humans, in Proceedings of Computer Animation (IEEE, 1999), pp. 118–127Google Scholar
  26. 26.
    J. Kuffner, K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, H. Inoue, Online footstep planning for humanoid robots, in IEEE International Conference on Robotics and Automation (ICRA’2003), 2003Google Scholar
  27. 27.
    J.C. Latombe, Robot Motion Planning (Kluwer Academic, Boston, 1991)CrossRefGoogle Scholar
  28. 28.
    J.P. Laumond, Robot Motion Planning and Control. Lecture Notes in Control and Information Sciences, vol. 229 (Springer, New York, 1998)Google Scholar
  29. 29.
    J.P. Laumond, M. Benallegue, J. Carpentier, A. Berthoz, The yoyo-Man. Int. J. Robot. Res. (2017). Scholar
  30. 30.
    S.M. LaValle, Planning Algorithms (Cambridge University Press, Cambridge, 2006)Google Scholar
  31. 31.
    K. Mombaur, J.P. Laumond, A. Truong, An inverse optimal control approach to human motion modeling, in ISRR 2009 (14th International Symposium of Robotics Research) (Springer STAR, 2009)Google Scholar
  32. 32.
    K. Mombaur, J.P. Laumond, E. Yoshida, An optimal control-based formulation to determine natural locomotor paths for humanoid robots. Adv. Robot. 24, 515–535 (2010)CrossRefGoogle Scholar
  33. 33.
    K. Mombaur, A. Truong, J.P. Laumond, From human to humanoid locomotion – an inverse optimal control approach. Auton. Robot. 28, 369–383 (2010)CrossRefGoogle Scholar
  34. 34.
    A.H. Olivier, A. Marin, A. Crétual, J. Pettré, Minimal predicted distance: a common metric for collision avoidance during pairwise interactions between walkers. Gait Posture 36(3), 399–404 (2012)CrossRefGoogle Scholar
  35. 35.
    A.H. Olivier, A. Marin, A. Crétual, A. Berthoz, J. Pettré, Collision avoidance between two walkers: role-dependent strategies. Gait Posture 38, 751–756 (2013)CrossRefGoogle Scholar
  36. 36.
    J. Ondrej, J. Pettrè, A. Olivier, S. Donikian, A synthetic-vision based steering approach for crowd simulation. ACM Trans. Graph. 29(4) (2010)CrossRefGoogle Scholar
  37. 37.
    A.E. Patla, A. Adkin, T. Ballard, Online steering: coordination and control of body center of mass, head and body reorientation. Exp. Brain Res. 129(4), 629–634 (1999)CrossRefGoogle Scholar
  38. 38.
    N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, E. Yoshida, Fast humanoid robot collision-free footstep planning using swept volume approximations. IEEE Trans. Robot. (T-RO) 28(2), 427–439 (2012)CrossRefGoogle Scholar
  39. 39.
    J. Pettré, J. Laumond, A motion capture based control-space approach for walking mannequins. Comput. Anim. Virtual Worlds 17(2), 109–126 (2006)CrossRefGoogle Scholar
  40. 40.
    J. Pettré, J. Ondřej, A.H. Olivier, A. Crétual, S. Donikian, Experiment-based modeling, simulation and validation of interactions between virtual walkers, in Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2009, pp. 189–198Google Scholar
  41. 41.
    Q.C. Pham, H. Hicheur, On the open-loop and feedback processes that underlie the formation of trajectories during visual and nonvisual locomotion in humans. J. Neurophysiol. 102(5), 2800–2815 (2009)CrossRefGoogle Scholar
  42. 42.
    Q.C. Pham, H. Hicheur, G. Arechavaleta, J.P. Laumond, A. Berthoz, The formation of trajectories during goal-oriented locomotion in humans. II. A maximum smoothness model. Eur. J. Neurosci. 26, 2391–2403 (2007)CrossRefGoogle Scholar
  43. 43.
    Q.C. Pham, A. Berthoz, H. Hicheur, Invariance of locomotor trajectories across visual and gait direction conditions. Exp. Brain Res. 210, 207–215 (2011)CrossRefGoogle Scholar
  44. 44.
    S.K. Rushton, R.S. Allison, Biologically-inspired heuristics for human-like walking trajectories toward targets and around obstacles. Displays 34, 105–113 (2013)CrossRefGoogle Scholar
  45. 45.
    S.K. Rushton, J.M. Harris, M.R. Lloyd, J.P. Wann, Guidance of locomotion on foot uses perceived target location rather than optic flow. Curr. Biol. 8, 1191–1194 (1998)CrossRefGoogle Scholar
  46. 46.
    P. Salaris, C. Vassallo, P. Soueres, J.P. Laumond, The geometry of confocal curves for passing through a door. IEEE Trans. Robot. 31(5), 1180–1193 (2015)CrossRefGoogle Scholar
  47. 47.
    S. Schaal, Dynamic movement primitives – a framework for motor control in humans and humanoid robotics, in The International Symposium on Adaptive Motion of Animals and Machines, vol. 73, 2006, pp. 261–280Google Scholar
  48. 48.
    J.L. Souman, I. Frissen, M.N. Sreenivasa, M.O. Ernst, Walking straight into circles. Curr. Biol. 19(18), 1538–1542 (2009)CrossRefGoogle Scholar
  49. 49.
    M. Sreenivasa, P. Soueres, J.P. Laumond, A. Berthoz, Steering a humanoid robot by its head, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009Google Scholar
  50. 50.
    M. Sreenivasa, P. Soueres, J.P. Laumond, Walking to grasp: modeling of human movements as invariants and an application to humanoid robotics. IEEE Trans. Syst. Man. Cybern. Part A Syst. Hum. 42(4), 880–893 (2012)CrossRefGoogle Scholar
  51. 51.
    M. Sreenivasa, K. Mombaur, J.P. Laumond, Walking paths to and from a goal differ: on the role of bearing angle in the formation of human locomotion paths. PLOS One (2015)Google Scholar
  52. 52.
    M.N. Sreenivasa, I. Frissen, J.L. Souman, M.O. Ernst, Walking along curved paths of different angles: the relationship between head and trunk turning. Exp. Brain Res. 191(3), 313–320 (2008)CrossRefGoogle Scholar
  53. 53.
    O. Stasse, B. Verrelst, A. Davison, N. Mansard, F. Saidi, B. Vanderborght, C. Esteves, K. Yokoi, Integrating walking and vision to increase humanoid autonomy. Int. J. Humanoid Rob. 5, 287–310 (2008)Google Scholar
  54. 54.
    E. Todorov, M. Jordan, Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5, 1226–35 (2002)CrossRefGoogle Scholar
  55. 55.
    C. Vassallo, A.H. Olivier, P. Souères, A. Crétual, O. Stasse, J. Pettré, How do walkers avoid a mobile robot crossing their way? Gait Posture 51, 97–103 (2017)CrossRefGoogle Scholar
  56. 56.
    S. Vieilledent, Y. Kerlirzin, S. Dalbera, A. Berthoz, Relationship between velocity and curvature of a human locomotor trajectory. Neurosci. Lett. 305, 65–69 (2001)CrossRefGoogle Scholar
  57. 57.
    W.H. Warren Jr, B.A. Kay, W.D. Zosh, A.P. Duchon, S. Sahuc, Optic flow is used to control human walking. Nat. Neurosci. 4(2), 213–216 (2001)CrossRefGoogle Scholar
  58. 58.
    R.M. Wilkie, J.P. Wann, Judgements of path, not heading, guide locomotion. J. Exp. Psychol. 32(1), 88–96 (2006)Google Scholar
  59. 59.
    R.M. Wilkie, G.K. Kountouriotis, N. Merat, J.P. Wann, Using vision to control locomotion: looking where you want to go. Exp. Brain Res. 204, 539–547 (2010)CrossRefGoogle Scholar
  60. 60.
    E. Yoshida, C. Esteves, I. Belousov, J.P. Laumond, T. Sakaguchi, K. Yokoi, Planning 3D collision-free dynamic robotic motion through iterative reshaping. IEEE Trans. Robot. 24(5) (2008)CrossRefGoogle Scholar
  61. 61.
    E. Yoshida, J. Laumond, C. Esteves, O. Kanoun, A. Mallet, T. Sakaguchi, K. Yokoi, Motion autonomy for humanoids, experiments on HRP-2 No. 14. Comput. Anim. Virtual Worlds 20(5–6), 511–522 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Manish Sreenivasa
    • 1
    Email author
  • Jean-Paul Laumond
    • 3
  • Katja Mombaur
    • 2
  • Alain Berthoz
    • 4
  1. 1.Optimization, Robotics & Biomechanics, Institute of Computer EngineeringHeidelberg UniversityHeidelbergGermany
  2. 2.Optimization, Robotics and Biomechanics (ORB), Institute of Computer Engineering (ZITI)University of HeidelbergHeidelbergGermany
  3. 3.LAAS-CNRSUniversity of ToulouseToulouseFrance
  4. 4.CNRSCollège de FranceParisFrance

Personalised recommendations