Advertisement

Virtual Constraints and Hybrid Zero Dynamics for Realizing Underactuated Bipedal Locomotion

  • Jessy W. Grizzle
  • Christine Chevallereau
Reference work entry

Abstract

Underactuation is ubiquitous in human locomotion and should be ubiquitous in bipedal robotic locomotion as well. This chapter presents a coherent theory for the design of feedback controllers that achieve stable walking gaits in underactuated bipedal robots. Two fundamental tools are introduced, virtual constraints and hybrid zero dynamics. Virtual constraints are relations on the state variables of a mechanical model that are imposed through a time-invariant feedback controller. One of their roles is to synchronize the robot’s joints to an internal gait phasing variable. A second role is to induce a low-dimensional system, the zero dynamics, that captures the underactuated aspects of a robot’s model, without any approximations. To enhance intuition, the relation between physical constraints and virtual constraints is first established. From here, the hybrid zero dynamics of an underactuated bipedal model is developed, and its fundamental role in the design of asymptotically stable walking motions is established. The chapter includes numerous references to robots on which the highlighted techniques have been implemented.

Notes

Acknowledgements

The work of J.W. Grizzle has been generously supported by NSF grants EECS-1525006, ECCS-1343720, and CNS-1239037. The work of C. Chevallereau is supported by ANR Equipex Robotex project.

References

  1. 1.
    K. Akbari Hamed, J.W Grizzle, Event-based stabilization of periodic orbits for underactuated 3-d bipedal robots with left-right symmetry. IEEE Trans. Robot. 30(2), 365–381 (2014)CrossRefGoogle Scholar
  2. 2.
    K. Akbari Hamed, B.G. Buss, J.W. Grizzle, Continuous-time controllers for stabilizing periodic orbits of hybrid systems: application to an underactuated 3D bipedal robot, in 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), Dec 2014, pp. 1507–1513Google Scholar
  3. 3.
    A.D. Ames, Human-inspired control of bipedal walking robots. IEEE Trans. Autom. Control, 59(5), 1115–1130 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A.D. Ames, AMBER-Lab (2016). https://www.youtube.com/user/ProfAmes
  5. 5.
    A.D. Ames, K. Galloway, K. Sreenath, J.W. Grizzle, Rapidly exponentially stabilizing control lyapunov functions and hybrid zero dynamics. IEEE Trans. Autom. Control 59(4), 876–891 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    B.G. Buss, Systematic Controller Design for Dynamic 3D Bipedal Robot Walking. PhD thesis, University of Michigan, Ann Arbor, May 2015Google Scholar
  7. 7.
    B.G. Buss, A. Ramezani, K. Akbari Hamed, B.A. Griffin, K.S. Galloway, J.W. Grizzle, Preliminary walking experiments with underactuated 3D bipedal robot MARLO, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), Sept 2014, pp. 2529–2536Google Scholar
  8. 8.
    C. Byrnes, A. Isidori, Asymptotic stabilization of nonlinear minimum phase systems. IEEE Trans. Autom. Control 376, 1122–37 (1991)Google Scholar
  9. 9.
    C. Chevallereau. Time scaling control for an underactuated biped robot. IEEE Trans. Robot. Autom. 19(2), 362–368 (2003)CrossRefGoogle Scholar
  10. 10.
    C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E.R. Westervelt, C. Canudas, J.W. Grizzle, RABBIT: a testbed for advanced control theory. IEEE Control Syst. Mag. 23(5), 57–79 (2003)Google Scholar
  11. 11.
    C. Chevallereau, D. Djoudi, and J.W. Grizzle, Stable bipedal walking with foot rotation through direct regulation of the Zero Moment Point. TRO 25(2), 390–401 (2008)CrossRefGoogle Scholar
  12. 12.
    C. Chevallereau, J.W. Grizzle, C.-L. Shih, Asymptotically stable walking of a five-link underactuated 3D bipedal robot. IEEE Trans. Robot. 25(1), 37–50 (2009)CrossRefGoogle Scholar
  13. 13.
    H. Dai, R. Tedrake, Optimizing robust limit cycles for legged locomotion on unknown terrain, in 2012 IEEE 51st Annual Conference on Decision and Control (CDC), 2012, pp. 1207–1213Google Scholar
  14. 14.
    R.D. Gregg, High-performance control of a powered transfemoral prosthesis with amputee subjects (2016). https://www.youtube.com/watch?v=sl1IXs0j4Ww
  15. 15.
    R.D. Gregg, T. Lenzi, L.J. Hargrove, J.W. Sensinger, Virtual constraint control of a powered prosthetic leg: from simulation to experiments with transfemoral amputees. IEEE Trans. Robot. 30, 1455–1471 (2014)CrossRefGoogle Scholar
  16. 16.
    R.D. Gregg, E.J. Rouse, L.J. Hargrove, J.W. Sensinger, Evidence for a time-invariant phase variable in human ankle control. PLoS One 9(2), e89163 (2014)CrossRefGoogle Scholar
  17. 17.
    B. Griffin, J.W. Grizzle, Nonholonomic virtual constraints for dynamic walking, in Preprint Submitted to IEEE Conference on Decision and Control, 2015Google Scholar
  18. 18.
    B. Griffin, J.W. Grizzle, Walking gait optimization for accommodation of unknown terrain height variations, in American Control Conference, 2015Google Scholar
  19. 19.
    J.W. Grizzle, Dynamic Leg Locomotion (2016) www.youtube.com/user/DynamicLegLoco- motion
  20. 20.
    J.W. Grizzle, G. Abba, F. Plestan, Asymptotically stable walking for biped robots: analysis via systems with impulse effects. IEEE Trans. Autom. Control 46, 51–64 (2001)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J.W. Grizzle, C. Chevallereau, A. Ames, R. Sinnet, Models, feedback control, and open problems of 3D bipedal robotic walking. Automatica 50(8), 1955–1988 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    K.A. Hamed, B.G. Buss, J.W. Grizzle, Exponentially stabilizing continuous-time controllers for periodic orbits of hybrid systems: application to bipedal locomotion with ground height variations. Int. J. Robot. Res. 35(8), 977–999 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Hereid, S. Kolathaya, M.S. Jones, J. Van Why, J.W. Hurst, A.D. Ames, Dynamic multi-domain bipedal walking with ATRIAS through SLIP based human-inspired control, in Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control (ACM, 2014), pp. 263–272Google Scholar
  24. 24.
    J. Horn, J. Reher, Zhao, V. Paredes, A.D. Ames, AMPRO: translating robotic locomotion to a powered transfemoral prosthesis, in International Conference on Robotics and Automation, ICRA, May 2015Google Scholar
  25. 25.
    Y. Hürmüzlü, D.B. Marghitu, Rigid body collisions of planar kinematic chains with multiple contact points. Int. J. Robot. Res. 13(1), 82–92 (1994)CrossRefGoogle Scholar
  26. 26.
    J. Lack, M.J. Powell, A.D. Ames, Planar multi-contact bipedal walking using hybrid zero dynamics, in 2014 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2014), pp. 2582–2588Google Scholar
  27. 27.
    I.R Manchester, Transverse dynamics and regions of stability for nonlinear hybrid limit cycles. IFAC Proc. 44(1), 6285–6290 (2011)CrossRefGoogle Scholar
  28. 28.
    A.E. Martin, D.C. Post, J.P. Schmiedeler, The effects of foot geometric properties on the gait of planar bipeds walking under HZD-based control. Int. J. Robot. Res. 33(12), 1530–1543 (2014)CrossRefGoogle Scholar
  29. 29.
    B. Morris, J. W. Grizzle, A restricted Poincaré map for determining exponentially stable periodic orbits in systems with impulse effects: application to bipedal robots, in Proceedings of the 2005 IEEE International Conference on Decision and Control European Control Conference, Seville, 2005, pp. 4199–206Google Scholar
  30. 30.
    B. Morris, J. W. Grizzle, Hybrid invariant manifolds in systems with impulse effects with application to periodic locomotion in bipedal robots. IEEE Trans. Autom. Control 54(8), 1751–1764 (2009)MathSciNetCrossRefGoogle Scholar
  31. 31.
    H.-W. Park, A. Ramezani, J.W. Grizzle, A finite-state machine for accommodating unexpected large ground height variations in bipedal robot walking. IEEE Trans. Robot. 29(29), 331–345 (2013)CrossRefGoogle Scholar
  32. 32.
    I. Poulakakis, J.W. Grizzle, The spring loaded inverted pendulum as the hybrid zero dynamics of an asymmetric hopper. IEEE Trans. Autom. Control 54(8), 1779–1793 (2009)MathSciNetCrossRefGoogle Scholar
  33. 33.
    M.J. Powell, A.D. Ames, Hierarchical control of series elastic actuators through control lyapunov functions. Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on, 2986–2992Google Scholar
  34. 34.
    M.J. Powell, H. Zhao, A.D. Ames, Motion primitives for human-inspired bipedal robotic locomotion: walking and stair climbing, in 2012 IEEE International Conference on Robotics and Automation (ICRA), 2012, pp. 543–549Google Scholar
  35. 35.
    A Ramezani, J.W. Hurst, K. Akbari Hamed, J.W. Grizzle, Performance analysis and feedback control of ATRIAS, a three-dimensional bipedal robot. J. Dyn. Syst. Meas. Control 136(2), 0210112-1–0210112-12 (2014)CrossRefGoogle Scholar
  36. 36.
    H. Razavi, A.M. Bloch, C. Chevallereau, J.W. Grizzle, Restricted discrete invariance and self-synchronization for stable walking of bipedal robots, in American Control Conference, 2015Google Scholar
  37. 37.
    N. Sadati, G.A. Dumont, K.A. Hamed, W.A. Gruver, Hybrid Control and Motion Planning of Dynamical Legged Locomotion. In: MengChu Zhou (ed.), IEEE Press Series on Systems Science and Engineering. (Wiley, 2012), 272 pages. ISBN: 978-1-118-31707-5Google Scholar
  38. 38.
    J. Schmiedeler, ERNIE robot walking with different feet (2016). https://www.youtube.com/watch?v=T2x3VvPaacA
  39. 39.
    C.-L. Shih, J.W. Grizzle, C. Chevallereau, From stable walking to steering of a 3D bipedal robot with passive point feet. Robotica 30(7), 1119–1130 (2012)CrossRefGoogle Scholar
  40. 40.
    A.S. Shiriaev, L.B. Freidovich, I.R. Manchester, Can we make a robot ballerina perform a pirouette? orbital stabilization of periodic motions of underactuated mechanical systems. Ann. Rev. Control 32(2), 200–211 (2008)CrossRefGoogle Scholar
  41. 41.
    A.S. Shiriaev, L.B. Freidovich, S.V. Gusev, Transverse linearization for controlled mechanical systems with several passive degrees of freedom. IEEE Trans. Autom. Control 55(4), 893–906 (2010)MathSciNetCrossRefGoogle Scholar
  42. 42.
    K. Sreenath, H.-W. Park, I. Poulakakis, J.W. Grizzle, A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL. Int. J. Robot. Res. 30(9), 1170–1193 (2011)CrossRefGoogle Scholar
  43. 43.
    K. Sreenath, H.-W. Park, I. Poulakakis, J.W. Grizzle, Embedding active force control within the compliant hybrid zero dynamics to achieve stable, fast running on MABEL. Int. J. Robot. Res. 33, 988–1005 (2014)Google Scholar
  44. 44.
    P. van Zutven, Control and Identification of Bipedal Humanoid Robots: Stability Analysis and Experiments. PhD thesis, University of Technology, Eindhoven, 2014Google Scholar
  45. 45.
    M. Vukobratović, B. Borovac, D. Surla, D. Stokic, Biped Locomotion (Springer, Berlin, 1990)CrossRefGoogle Scholar
  46. 46.
    T. Wang, C. Chevallereau, D. Tlalolini, Stable walking control of a 3D biped robot with foot rotation. Robotica FirstView:1–20, (2014)Google Scholar
  47. 47.
    E.R. Westervelt, G. Buche, J.W. Grizzle, Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds. Int. J. Robot. Res. 24(6), 559–582 (2004)Google Scholar
  48. 48.
    E.R. Westervelt, J.W. Grizzle, C. Chevallereau, J.-H. Choi, B. Morris, Feedback Control of Dynamic Bipedal Robot Locomotion. (CRC Press, Boca Raton, 2007)CrossRefGoogle Scholar
  49. 49.
    E.R. Westervelt, J.W. Grizzle, D.E. Koditschek, Hybrid zero dynamics of planar biped walkers. IEEE Trans. Autom. Control 48(1), 42–56 (2003)MathSciNetCrossRefGoogle Scholar
  50. 50.
    T. Yang, E.R. Westervelt, A. Serrani, J.P. Schmiedeler, A framework for the control of stable aperiodic walking in underactuated planar bipeds. Auton. Robot. 27(3), 277–290 (2009)CrossRefGoogle Scholar
  51. 51.
    H.-H. Zhao, W.-L. Ma, A.D. Ames, M.B. Zeagler, Human-inspired multi-contact locomotion with AMBER2, in 2014 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), 2014, pp. 199–210Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborUSA
  2. 2.Laboratoire des Sciences du Numérique de Nantes (LS2N)UMR CNRS 6004CNRSFrance

Personalised recommendations