Advertisement

Neuromuscular Control Models of Human Locomotion

  • Hartmut Geyer
  • André Seyfarth
Reference work entry

Abstract

Neuromuscular control models describe human locomotion by combining kinematic chain representations of the human skeleton with models of muscle-tendon actuators and control architectures mimicking neural circuits. The models have originally been developed to better understand human motor control. However, over the past two decades, they have reached a level of sophistication that invites their application in the control of robotic limbs and humanoid robots. The application opportunities motivate this overview chapter on human neuromuscular models. First, the key elements of the human locomotion system are introduced from an engineering perspective, providing physiological context and examples of model implementations. The elements are then combined, and the overall control topology of human neuromuscular models is discussed. Finally, the evolution of specific control hypotheses and architectures is highlighted, including architectures with a central pattern network at the core and architectures bypassing it. The chapter closes with suggestions for future directions that will likely improve the utility of neuromuscular models and with examples of their application in the control of robotic systems.

References

  1. 1.
    D.E. Angelaki, K.E. Cullen, Vestibular system: the many facets of a multimodal sense. Ann. Rev. Neurosci. 31, 125–150 (2008)CrossRefGoogle Scholar
  2. 2.
    J.S. Bay, H. Hemami, Modeling of a neural pattern generator with coupled nonlinear oscillators. IEEE Trans. Biomed. Eng. BME-34(4), 297–306 (1987)CrossRefGoogle Scholar
  3. 3.
    B.R. Botterman, M.D. Binder, D.G. Stuart, Functional anatomy of the association between motor units and muscle receptors. Integr. Comp. Biol. 18, 135–152 (1978)CrossRefGoogle Scholar
  4. 4.
    T.G. Brown, On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J. Physiol. 48(1), 18–46 (1914)CrossRefGoogle Scholar
  5. 5.
    C.K. Chow, D.H. Jacobson, Studies of human locomotion via optimal programming. Math. Biosci. 10(3–4), 239–306 (1971)CrossRefGoogle Scholar
  6. 6.
    S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan, A. Habib, C.T. John, E. Guendelman, D.G. Thelen, OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)CrossRefGoogle Scholar
  7. 7.
    V. Dietz, Proprioception and locomotor disorders. Nat. Rev. Neurosci. 3(10), 781–790 (2002)CrossRefGoogle Scholar
  8. 8.
    V. Dietz, Spinal cord pattern generators for locomotion. Clin. Neurophysiol. 114(8), 1379–1389 (2003)CrossRefGoogle Scholar
  9. 9.
    J. Duysens, F. Clarac, H. Cruse, Load-regulating mechanisms in gait and posture: comparative aspects. Physiol. Rev. 80, 83–133 (2000)CrossRefGoogle Scholar
  10. 10.
    F. Dzeladini, J. van den Kieboom, A. Ijspeert, The contribution of a central pattern generator in a reflex-based neuromuscular model. Front. Hum. Neurosci. 8, 1–18 (2014)Google Scholar
  11. 11.
    M. Eilenberg, H. Geyer, H. Herr, Control of a powered ankle-foot prosthesis based on a neuromuscular model. IEEE Trans. Neural Syst. Rehabil. Eng. 18(2), 164–173 (2010)CrossRefGoogle Scholar
  12. 12.
    A.A. Faisal, L.P.J. Selen, D.M. Wolpert, Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008)CrossRefGoogle Scholar
  13. 13.
    A.G. Feldman, M.F. Levin, The equilibrium-point hypothesis past, present and future, in Progress in Motor Control, ed. by D. Sternad, vol. 629 (Springer, New York/London, 2009), pp. 699–726Google Scholar
  14. 14.
    T. Geng, B. Porr, F. Worgotter, A reflexive neural network for dynamic biped walking control. Neural Comput. 18(5), 1156–1196 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Geyer, H. Herr, A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 263–273 (2010)CrossRefGoogle Scholar
  16. 16.
    H. Geyer, A. Seyfarth, R. Blickhan, Positive force feedback in bouncing gaits? Proc. R. Soc. Lond. B 270, 2173–2183 (2003)CrossRefGoogle Scholar
  17. 17.
    S. Grillner, Neurobiological bases of rhythmic motor acts in vertebrates. Science 228(4696), 143–9 (1985)CrossRefGoogle Scholar
  18. 18.
    M. Günther, H. Ruder, Synthesis of two-dimensional human walking: a test of the λ-model. Biol. Cybern. 89, 89–106 (2003)Google Scholar
  19. 19.
    S. Harkema, Y. Gerasimenko, J. Hodes, J. Burdick, C. Angeli, Y. Chen, C. Ferreira, A. Willhite, E. Rejc, R.G. Grossman, V.R. Edgerton, Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377(9781), 1938–47 (2011)CrossRefGoogle Scholar
  20. 20.
    K. Hase, N. Yamazaki, Computational evolution of human bipedal walking by a neuro-musculo-skeletal model. Artif. Life Robot. 3(3), 133–138 (1999)CrossRefGoogle Scholar
  21. 21.
    K. Hase, N. Yamazaki, Computer simulation study of human locomotion with a three-dimensional entire-body neuro-musculo-skeletal model. I. Acquisition of normal walking. JSME Int. J. Ser. C 45, 1040–1050 (2002)CrossRefGoogle Scholar
  22. 22.
    H. Hatze, The complete optimization of a human motion. Math. Biosci. 28, 99–135 (1976)MathSciNetCrossRefGoogle Scholar
  23. 23.
    T. Hogervorst, R.A. Brand, Mechanoreceptors in joint function. J. Bone Joint Surg. Am. 80, 1365–1378 (1998)Google Scholar
  24. 24.
    J. Houk, W. Simon, Responses of Golgi tendon organs to forces applied to muscle tendon. J. Neurophysiol. 30(6), 1466–81 (1967)CrossRefGoogle Scholar
  25. 25.
    A. Kavounoudias, R. Roll, J.P. Roll, The plantar sole is a ‘dynamometric map’ for human balance control. Neuroreport 9, 3247–3252 (1998)CrossRefGoogle Scholar
  26. 26.
    M. Kawato, Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9(6), 718–727 (1999). ISBN 0959-4388, https://doi.org/10.1016/S0959-4388(99)00028-8CrossRefGoogle Scholar
  27. 27.
    A.D. Kuo, The relative roles of feedforward and feedback in the control of rhythmic movements. Motor Control 6, 129–145 (2002)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Y. Lee, M.S. Park, T. Kwon, J. Lee, Locomotion control for many-muscle humanoids. ACM Trans. Graph. 33(6), 1–11 (2014)CrossRefGoogle Scholar
  29. 29.
    P. Manoonpong, T. Geng, T. Kulvicius, B. Porr, F. Wörgötter, Adaptive, fast walking in a biped robot under neuronal control and learning. PLoS Comput. Biol. 3, 134 (2007)Google Scholar
  30. 30.
    J. Markowitz, P. Krishnaswamy, M.F. Eilenberg, K. Endo, C. Barnhart, H. Herr, Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1570), 1621–1631 (2011)CrossRefGoogle Scholar
  31. 31.
    K. Matsuoka, Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol. Cybern. 52, 367–376 (1985)MathSciNetCrossRefGoogle Scholar
  32. 32.
    T.A. McMahon, Muscles, Reflexes, and Locomotion (Princeton University Press, Princeton, 1984)Google Scholar
  33. 33.
    T. Mita, T. Yamaguchi, T. Kashiwase, T. Kawase, Realization of a high speed biped using modern control theory. Int. J. Control 40(1), 107–119 (1984)CrossRefGoogle Scholar
  34. 34.
    I. Morishita, A. Yajima, Analysis and simulation of networks of mutually inhibiting neurons. Kybernetik 11, 154–165 (1972)CrossRefGoogle Scholar
  35. 35.
    J. Nassour, P. Hénaff, F. Benouezdou, G. Cheng, Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots. Biol. Cybern. 108(3), 291–303 (2014). https://doi.org/10.1007/s00422-014-0592-8CrossRefGoogle Scholar
  36. 36.
    N. Ogihara, N. Yamazaki, Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model. Biol. Cybern. 84(1), 1–11 (2001)CrossRefGoogle Scholar
  37. 37.
    G.N. Orlovsky, T.G. Deliagina, S. Grillner, Neuronal Control of Locomotion: From Mollusc to Man (Oxford University Press, New York, 1999)Google Scholar
  38. 38.
    A. Prochazka, M. Gorassini, Models of ensemble firing of muscle spindle afferents recorded during normal locomotion in cats. J. Physiol. 507, 277–291 (1998)CrossRefGoogle Scholar
  39. 39.
    U. Proske, S.C. Gandevia, The kinaesthetic senses. J. Physiol. 587, 4139–4146 (2009)CrossRefGoogle Scholar
  40. 40.
    M. Schubert, A. Curt, L. Jensen, V. Dietz, Corticospinal input in human gait: modulation of magnetically evoked motor responses. Exp. Brain Res. 115, 234–246 (1997)CrossRefGoogle Scholar
  41. 41.
    K. Seo, S.Y. Hyung, B.K. Choi, Y. Lee, Y. Shim, A new adaptive frequency oscillator for gait assistance, in 2015 IEEE International Conference on Robotics and Automation (IEEE, Piscataway, 2015), pp. 5565–5571Google Scholar
  42. 42.
    A. Seyfarth, R. Blickhan, J.L. Van Leeuwen, Optimum take-off techniques and muscle design for long jump. J. Exp. Biol. 203(Pt 4), 741–750 (2000)Google Scholar
  43. 43.
    S. Song, H. Geyer, A neural circuitry that emphasizes spinal feedbacks generates diverse behaviours of human locomotion. J. Physiol. 593(16), 3493–3511 (2015)CrossRefGoogle Scholar
  44. 44.
    F. Sup, H.A. Varol, J. Mitchell, T.J. Withrow, M. Goldfarb, Self-contained powered knee and ankle prosthesis: initial evaluation on a transfemoral amputee. IEEE Int. Conf. Rehabil. Robot. 2009, 638–644 (2009)Google Scholar
  45. 45.
    G. Taga, Emergence of bipedal locomotion through entrainment among the neuro-musculo-skeletal system and the environment. Phys. D Nonlinear Phenom. 75(1-3), 190–208 (1994)CrossRefGoogle Scholar
  46. 46.
    G. Taga, A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait. Biol. Cybern. 73(2), 97–111 (1995)CrossRefGoogle Scholar
  47. 47.
    G. Taga, A model of the neuro-musculo-skeletal system for human locomotion. II. Real-time adaptability under various constraints. Biol. Cybern. 73(2), 113–121 (1995)CrossRefGoogle Scholar
  48. 48.
    G. Taga, A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance. Biol. Cybern. 78(1), 9–17 (1998)CrossRefGoogle Scholar
  49. 49.
    G. Taga, Y. Yamaguchi, H. Shimizu, Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol. Cybern. 65(3), 147–159 (1991)CrossRefGoogle Scholar
  50. 50.
    N. Thatte, H. Geyer, Toward balance recovery with leg prostheses using neuromuscular model control. IEEE Trans. Biomed. Eng. 63(5), 904–913 (2016)CrossRefGoogle Scholar
  51. 51.
    N. Van Der Noot, A.J. Ijspeert, R. Ronsse, Biped gait controller for large speed variations, combining reflexes and a central pattern generator in a neuromuscular model, in Proceedings of the IEEE Internetional Conference on Robotics and Automation, June 2015, pp. 6267–6274. ISBN 978-1-4799-6923-4,  https://doi.org/10.1109/ICRA.2015.7140079
  52. 52.
    N. Van der Noot, L. Colasanto, A. Barrea, J. van den Kieboom, R. Ronsse, A.J. Ijspeert, Experimental validation of a reflex-based controller for dynamic walking with a humanoid robot, in 2015 IEEE Internetional Conference on Robotics and Automation (2015). 9781479999934Google Scholar
  53. 53.
    J.L. van Leeuwen, Muscle function in locomotion, in Mechanics of Animal Locomotion, ed. by R.M. Alexander, vol. 11 (Springer, New York/Berlin, 1992), pp. 191–249Google Scholar
  54. 54.
    A.J. van Soest, M.F. Bobbert, The contribution of muscle properties in the control of explosive movements. Biol. Cybern. 69, 195–204 (1993)CrossRefGoogle Scholar
  55. 55.
    J.M. Wang, S.R. Hamner, S.L. Delp, V. Koltun, Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Trans. Graph. 31, 1–11 (2012)Google Scholar
  56. 56.
    J.M. Winters, Hill-based muscle models: a system engineering perspective, in Multiple Muscle Systems: Biomechanics and Movement Organization, ed. by J.M. Winters, S.L.-Y. Woo (Springer, New York, 1990), pp. 69–93, Chap. 5CrossRefGoogle Scholar
  57. 57.
    F. Worgotter, B. Porr, Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput. 17(2), 245–319 (2005)CrossRefGoogle Scholar
  58. 58.
    A.R. Wu, F. Dzeladini, T.J.H. Brug, F. Tamburella, N.L. Tagliamonte, E.H.F. van Asseldonk, H. van der Kooij, A.J. Ijspeert, An adaptive neuromuscular controller for assistive lower-limb exoskeletons: a preliminary study on subjects with spinal cord injury. Front. Neurorobot. 11 (2017).  https://doi.org/10.3389/fnbot.2017.00030, http://journal.frontiersin.org/article/10.3389/fnbot.2017.00030/full
  59. 59.
    K. Yin, K. Loken, M. van der Penne, SIMBICON: simple biped locomotion control, in Proceedings of ACM SIGGRAPH, vol. 26 (2007), p. 105Google Scholar
  60. 60.
    A.J. Young, D.P. Ferris, State-of-the-art and future directions for robotic lower limb exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. (99), 1–1 (2016). ISBN 1534-4320 VO – PP.  https://doi.org/10.1109/TNSRE.2016.2521160, http://ieeexplore.ieee.org/ielx7/7333/4359219/07393837.pdf?tp=&arnumber=7393837&isnumber=4359219CrossRefGoogle Scholar
  61. 61.
    F.E. Zajac, Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Engin. 17(4), 359–411 (1989)Google Scholar
  62. 62.
    F.E. Zajac, R.R. Neptune, S.A. Kautz, Biomechanics and muscle coordination of human walking Part II: Lessons from dynamical simulations and clinical implications. Gait Posture 17, 1–17 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Robotics InstituteCarnegie Mellon UniversityPittsburghUSA
  2. 2.Locomotion Laboratory, Institute of Sport ScienceTechnical University of DarmstadtDarmstadtGermany

Personalised recommendations