Advertisement

Torque-Based Balancing

  • Christian Ott
  • Sang-Ho Hyon
Reference work entry

Abstract

This chapter presents an overview of balance control approaches which utilize joint torque as the control input. Such control approaches are particularly useful for robots with explicit measurement of the generalized actuation forces allowing for an inner loop torque control. As a system model, floating base robot dynamics is considered in combination with a set of contact constraints. After discussion of the problem of how to control contact forces for a constrained mechanical system, a detailed treatment of the force distribution problem is given, which appears in multi-contact situations of legged robots. In addition, the basic approaches to implement joint torque control in electrically and hydraulically actuated robots are discussed. The chapter presents the general control theory based on dynamic inversion and passivity theory and highlights some successful implementations using two torque-controlled humanoid robots based on electric and hydraulic actuation.

References

  1. 1.
    J. Hollerbach, K. Suh, Redundancy resolution of manipulators through torque optimization. IEEE J. Robot. Autom. 3(4), 308–316 (1987)CrossRefGoogle Scholar
  2. 2.
    O. Khatib, A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. RA-3(1), 43–53 (1987)CrossRefGoogle Scholar
  3. 3.
    A. De Luca, G. Oriolo, Issues in acceleration resolution of robot redundancy, in 3rd IFAC Sympoisum on Robot Control, Vienna, 1999, pp. 93–98Google Scholar
  4. 4.
    Y. Fujimoto, A. Kawamura, Simulation of an autonomous biped walking robot including environmental force interaction. IEEE Robot. Autom. Mag. 5(2), 33–42 (1998)CrossRefGoogle Scholar
  5. 5.
    J. Yamaguchi, N. Kinoshita, A. Takanishi, I. Kato, Development of a dynamic biped walking system for humanoid development of a biped walking robot adapting to the humans’ living floor, in IEEE International Conference on Robotics and Automation, vol. 1, 1996, pp. 232–239Google Scholar
  6. 6.
    K. Hirai, M. Hirose, Y. Haikawa, T. Takenaka, The development of the Honda humanoid robot, in IEEE International Conference on Robotics and Automation, Leuven, 1998, pp. 1321–1328Google Scholar
  7. 7.
    J. Pratt, C. Chew, A. Torres, P. Dilworth, G. Pratt, Virtual model control: an intuitive approach for bipedal locomotion. Int. J. Robot. Res. 20(2), 129–143 (2001)CrossRefGoogle Scholar
  8. 8.
    G.A. Pratt, M.M. Williamson, Series elastic actuators, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 1995, pp. 399–406Google Scholar
  9. 9.
    S. Hyon, J.G. Hale, G. Cheng, Full-body compliant human-humanoid interaction: balancing in the presence of unknown external forces. IEEE Trans. Robot. 23(5), 884–898 (2007)CrossRefGoogle Scholar
  10. 10.
    A. Albu-Schaeffer, C. Ott, G. Hirzinger, A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int. J. Robot. Res. 26(1), 23–39 (2007)Google Scholar
  11. 11.
    S. Arimoto, M. Sekimoto, H. Hashiguchi, R. Ozawa, Natural resolution of ill-posedness of inverse kinematics for redundant robots: a challenge to bernstein’s degrees-of-freedom problem. Adv. Robot. 19(4), 401–434 (2005)CrossRefGoogle Scholar
  12. 12.
    S. Hyon, Compliant terrain adaptation for biped humanoids without measuring ground surface and contact forces. IEEE Trans. Robot. 25(1), 171–178 (2009)CrossRefGoogle Scholar
  13. 13.
    C. Ott, M.A. Roa, G. Hirzinger, Posture and balance control for biped robots based on contact force optimization, in IEEE-RAS International Conference on Humanoid Robots, 2011, pp. 26–33Google Scholar
  14. 14.
    R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Manipulation CRC Press, Inc. Boca Raton, FL, USA, (1994)Google Scholar
  15. 15.
    L. Sentis, O. Khatib, Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int. J. Humanoid Rob. 2(4), 505–518 (2005)CrossRefGoogle Scholar
  16. 16.
    M. Michael, J. Nakanishi, G. Cheng, S.A. Stefan, Inverse kinematics with floating base and constraints for full body humanoid robot control, in IEEE-RAS International Conference on Humanoid Robots, 2008, pp. 22–27Google Scholar
  17. 17.
    B. Stephens, C. Atkeson, Dynamic balance force control for compliant humanoid robots, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp. 1248–1255Google Scholar
  18. 18.
    R. Murray, Z. Li, S. Sastry A Mathematical Introduction to Robotic Manipulation (CRC Press, Boca Raton, 1994)Google Scholar
  19. 19.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Resolved momentum control: humanoid motion planning based on the linear and angular momentum, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003, pp. 1644–1650Google Scholar
  20. 20.
    D. Orin, A. Goswami, S. Lee, Centroidal dynamics of a humanoid robot. Auton. Robot. 35, 161–176 (2013)CrossRefGoogle Scholar
  21. 21.
    G. Garofalo, B. Henze, J. Engelsberger, C. Ott, On the inertially decoupled structure of the floating base robot dynamics, in 8th Vienna International Conference on Mathematical Modelling (MATHMOD), 2015, pp. 322–327CrossRefGoogle Scholar
  22. 22.
    B. Henze, M.A. Roa, C. Ott, Passivity-based whole-body balancing for torque-controlled humanoid robots in multi-contact scenarios. The International Journal of Robotics Research (IJRR), 35(12), pp 1522–1543 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Zhang, E.D. Fasse, Spatial compliance modeling using a quaternion-based potential function method. Multibody Sys. Dyn. 4, 75–101 (2000)Google Scholar
  24. 24.
    A. Herzog, L. Righetti, F. Grimminger, P. Pastor, S. Schaal, Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 981–988Google Scholar
  25. 25.
    G. Hirzinger, N. Sporer, A. Albu-Schaeffer, M. Haehnle, R. Krenn, A. Pascucci, M. Schedl, DLR’s torque-controlled light weight robot III – are we reaching the technological limits now? in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, pp. 1710–1716Google Scholar
  26. 26.
    C. Ott, A. Albu-Schaeffer, A. Kugi, G. Hirzinger, On the passivity based impedance control of flexible joint robots. IEEE Trans. Rob. 24(2), 416–429 (2008)CrossRefGoogle Scholar
  27. 27.
    L.L. Tien, A. Albu-Schaeffer, A.D. Luca, G. Hirzinger, Friction observer and compensation for control of robots with joint torque measurement, in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 3789–3795Google Scholar
  28. 28.
    M.J. Kim, W.K. Chung, Disturbance-observer-based pd control of flexible joint robots for asymptotic convergence. IEEE Trans. Rob. 31(6), 1508–1516 (2015)CrossRefGoogle Scholar
  29. 29.
    H.E. Merrit, Hydraulic Control Systems (Wiley, New York, 1967)Google Scholar
  30. 30.
    S. Hyon, D. Suewaka, Y. Torii, and N. Oku, Design and experimental evaluation of a fast torque-controlled hydraulic humanoid robot. IEEE/ASME Transactions on Mechatronics, 22(2), pp. 623–634, (2017)CrossRefGoogle Scholar
  31. 31.
    A. Alleyne, R. Liu, A simplified approach to force control for electro-hydraulic systems. Control. Eng. Pract. 8(12), 1347–1356 (2000)CrossRefGoogle Scholar
  32. 32.
    B. Yao, F. Bu, J. Reedy, G.T.C. Chiu, Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments, in American Control Conference, vol. 2, 1999, pp. 759–763Google Scholar
  33. 33.
    H.K. Khalil, Nonlinear Systems, 2nd edn. (Prentice-Hall, Upper Saddle River, 1996)Google Scholar
  34. 34.
    L. Sciavicco, B. Siciliano, Modeling and Control of Robot Manipulators, 2nd edn. (Springer, London, 1996)Google Scholar
  35. 35.
    A. Takanishi, T. Takeya, H. Karaki, I. Kato, A control method for dynamic biped walking under unknown external force, in IEEE International Workshop on Intelligent Robots and Systems, Tsuchiura, 1990, pp. 795–801Google Scholar
  36. 36.
    J. Yamaguchi, E. Soga, S. Inoue, A. Takanishi, Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking, in IEEE International Conference on Robotics and Automation, Detroit, 1999, pp. 368–374Google Scholar
  37. 37.
    T. Sugihara, Y. Nakamura, Whole-body cooperative balancing of humanoid robot using COG Jacobian, in IEEE/RSJ International Conference on Intelligent Robots and System, Lausanne, vol. 3, 2002, pp. 2575–2580Google Scholar
  38. 38.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Resolved momentum control: humanoid motion planning based on the linear and angular momentum, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, 2003, pp. 1644–1650Google Scholar
  39. 39.
    J. Englsberger, A. Werner, C. Ott, M.A.R.B. Henze, G. Garofalo, R. Burger, A. Beyer, O. Eiberger, K. Schmid, A. Albu-Schaeffer, Overview of the torque-controlled humanoid robot TORO, in IEEE-RAS International Conference on Humanoid Robots, 2014, pp. 916–923Google Scholar
  40. 40.
    C. Ott, B. Henze, G. Hettich, T.N. Seyde, M.A. Roa, V. Lippi, T. Mergner, Good posture, good balance: comparison of bioinspired and model-based approaches for posture control of humanoid robots. IEEE Robot. Autom. Mag. 23, 22–33 (2016)CrossRefGoogle Scholar
  41. 41.
    B. Henze, A. Dietrich, C. Ott, An approach to combine balancing with hierarchical whole-body control for legged humanoid robots. IEEE Robot. Automat. Lett. 1, 700–707 (2016)CrossRefGoogle Scholar
  42. 42.
    G. Cheng, S. Hyon, J. Morimoto, A. Ude, J.G. Hale, G. Colvin, W. Scroggin, S.C. Jacobsen, CB: a humanoid research platform for exploring neuroscience. Adv. Robot. 21(10), 1097–1114 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Robotics and MechatronicsGerman Aerospace Center (DLR)WesslingGermany
  2. 2.Robotics and Mechatronics Center (RMC)WesslingGermany
  3. 3.Department of RoboticsRitsumeikan UniversityShigaJapan

Personalised recommendations