Advertisement

Human Sense of Balance

  • Thomas Mergner
  • Robert J. Peterka
Reference work entry

Abstract

This overview describes human posture control mechanisms combining biomechanics with neural control and sensory feedback aspects. The control enables humans to automatically balance during standing and walking in the presence of external disturbances such as gravity. Understanding postural mechanisms is important for identifying and treating balance disorders in patients and elderly subjects and for construction of therapeutic and rehabilitation devices. The overview describes the most relevant sensors for balancing and their use in two complementary dynamic control models of perturbed stance. The first model rigorously analyzes human reactive sway behavior and describes it as the effect of feedback from the vestibular, proprioception, and visual sensors and extant sensory reweighting rules. The second model combines posture control with movement execution control, using fusion of sensory signals to estimate and compensate external and self-produced disturbances.

References

  1. 1.
    F. Antritter, F. Scholz, G. Hettich, T. Mergner, Stability analysis of human stance control from the system theoretic point of view, in Control Conference (ECC), (2014).  https://doi.org/10.1109/ECC.2014.6862198CrossRefGoogle Scholar
  2. 2.
    M. Asada, K. Hosada, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y. Yoshikawa, M. Ogino, C. Yoshida, Cognitive developmental robotics: A survey. IEEE Trans. Auton. Ment. Dev. 1, 12–34 (2009)CrossRefGoogle Scholar
  3. 3.
    E.H.F. Van Asseldonk, J.H. Buurke, B.R. Bloem, G.J. Renzenbrink, A.V. Nene, F.C.T. van der Helm, H. van der Kooij, Disentangling the contribution of the paretic and non-paretic ankle to balance control in stroke patients. Exp. Neurol. 201, 441–451 (2006)CrossRefGoogle Scholar
  4. 4.
    L. Assländer, G. Hettich, T. Mergner, Visual contribution to human standing balance during support surface tilts. Hum. Mov. Sci. 41, 147–164 (2015)CrossRefGoogle Scholar
  5. 5.
    A.J. Bastian, Mechanisms of ataxia. Phys. Ther. 77, 672–675 (1997)CrossRefGoogle Scholar
  6. 6.
    N.A. Bernstein, The Coordination and Regulation of Movements (Pergamon Press, Oxford, 1967)Google Scholar
  7. 7.
    J. Bingham, J. Choi, L.H. Ting, Stability in a frontal plane model of balance requires coupled changes to postural configuration and neural feedback control. J. Neurophysiol. 106, 437–448 (2011)CrossRefGoogle Scholar
  8. 8.
    T.A. Boonstra, A.C. Schouten, H. Van der Kooij, Identification of the contribution of the ankle and hip joints to multi-segmental balance control. J. Neuroeng. Rehabil. 10, 1 (2013)CrossRefGoogle Scholar
  9. 9.
    G. Bosco, R.E. Poppele, Reference frames for spinal proprioception: Kinematics based or kinetics based? J. Neurophysiol. 83, 2946–2955 (2000)CrossRefGoogle Scholar
  10. 10.
    M. Cenciarini, R.J. Peterka, Stimulus-dependent changes in the vestibular contribution to human postural control. J. Neurophysiol. 95, 2733–2750 (2006)CrossRefGoogle Scholar
  11. 11.
    C. Cnyrim, T. Mergner, C. Maurer, Potential roles of force cues in human stance control. Exp. Brain Res. 194, 419–433 (2009)CrossRefGoogle Scholar
  12. 12.
    D.F. Collins, A. Prochazka, Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. J. Physiol. 496, 857–871 (1996)CrossRefGoogle Scholar
  13. 13.
    W.D.T. Davies, System Identification for Self-Adaptive Control (Wiley Interscience, London, 1970)zbMATHGoogle Scholar
  14. 14.
    V. Dietz, G.A. Horstmann, M. Trippel, A. Gollhofer, Human postural reflexes and gravity – an under water simulation. Neurosci. Lett. 106, 350–355 (1989)CrossRefGoogle Scholar
  15. 15.
    J.M. Goldberg, C. Fernández, Responses of peripheral vestibular neurons to angular and linear accelerations in the squirrel monkey. Acta Otolaryngol. 80, 101–110 (1975)CrossRefGoogle Scholar
  16. 16.
    A.D. Goodworth, R.J. Peterka, Influence of stance width on frontal plane postural dynamics and coordination in human balance control. J. Neurophysiol. 104, 1103–1118 (2010)CrossRefGoogle Scholar
  17. 17.
    A.D. Goodworth, R.J. Peterka, Sensorimotor integration for multisegmental frontal plane balance control in humans. J. Neurophysiol. 107, 12–28 (2012)CrossRefGoogle Scholar
  18. 18.
    A. Goswami, Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Robot. Res. 18, 523–533 (1999)CrossRefGoogle Scholar
  19. 19.
    G. Hettich, L. Assländer, A. Gollhofer, T. Mergner, Human hip-ankle coordination emerging from multisensory feedback control. Hum. Mov. Sci. 37, 123–146 (2014)CrossRefGoogle Scholar
  20. 20.
    H. von Holst, H. Mittelstaedt, The reafference principle, in Selected Papers of Erich von Holst. The Behavioural Physiology of Animals and Man, (Methuen, London, 1973), pp. 139–173Google Scholar
  21. 21.
    J. Houk, E. Henneman, Feedback control of skeletal muscles. Brain Res. 5, 433–451 (1967)CrossRefGoogle Scholar
  22. 22.
    J.J. Jeka, J.R. Lackner, Fingertip contact influences human postural control. Exp. Brain Res. 79, 495–502 (1994)CrossRefGoogle Scholar
  23. 23.
    R. Johansson, M. Magnusson, Human postural dynamics. Crit. Rev. Biomed. Eng. 18, 413 (1991)Google Scholar
  24. 24.
    T. Kiemel, A.J. Elahi, J.J. Jeka, Identification of the plant for upright stance in humans: Multiple movement patterns from a single neural strategy. J. Neurophysiol. 100, 3394–3406 (2008)CrossRefGoogle Scholar
  25. 25.
    D.A. Kistemaker, A.J. Van Soest, J.D. Wong, I.L. Kurtzer, P.L. Gribble, Control of position and movement is simplified by combined muscle spindle and Golgi tendon organ feedback. J. Neurophysiol. 109, 1126–1139 (2013)CrossRefGoogle Scholar
  26. 26.
    H. Van der Kooij, R.J. Peterka, Non-linear stimulus-response behavior of the human stance control system is predicted by optimization of a system with sensory and motor noise. J. Comput. Neurosci. 30, 759–778 (2011)CrossRefGoogle Scholar
  27. 27.
    V. Lippi, T. Mergner, G. Hettich, A bio-inspired modular system for humanoid posture control, in Towards a Robot-Enabled, Neuroscience-Guided Healthy Society, (IROS, Tokyo, 2013), pp. 1–6Google Scholar
  28. 28.
    C. Maurer, T. Mergner, B. Bolha, F. Hlavacka, Human balance control during cutaneous stimulation of the plantar soles. Neurosci. Lett. 302, 45–48 (2001)CrossRefGoogle Scholar
  29. 29.
    C. Maurer, T. Mergner, R.J. Peterka, Multisensory control of human upright stance. Exp. Brain Res. 171, 231–250 (2006)CrossRefGoogle Scholar
  30. 30.
    G. McCollum, F.B. Horak, L.M. Nashner, Parsimony in neural calculations for postural movements, in Cerebellar Functions, ed. by J.R. Bloedel, J. Dichgans, W. Precht, (Springer, Berlin/Heidelberg, 1985), pp. 52–66Google Scholar
  31. 31.
    J. Mcintyre, E. Bizzi, Servo hypotheses for the biological control of movement. J. Mot. Behav. 25, 193–202 (1993)CrossRefGoogle Scholar
  32. 32.
    T. Mergner, W. Huber, W. Becker, Vestibular-neck interaction and transformation of sensory coordinates. J. Vestib. Res. 7, 347–367 (1997)CrossRefGoogle Scholar
  33. 33.
    T. Mergner, C. Maurer, R.J. Peterka, A multisensory posture control model of human upright stance. Prog. Brain Res. 142, 189–201 (2003)CrossRefGoogle Scholar
  34. 34.
    T. Mergner, G. Nardi, W. Becker, L. Deecke, The role of canal-neck interaction for the perception of horizontal trunk and head rotation. Exp. Brain Res. 49, 198–208 (1983)CrossRefGoogle Scholar
  35. 35.
    T. Mergner, G. Schweigart, L. Fennell, Vestibular humanoid postural control. J. Physiol. Paris 103, 178–194 (2009)CrossRefGoogle Scholar
  36. 36.
    T. Mergner, G. Schweigart, O. Kolev, F. Hlavacka, W. Becker, Visual–vestibular interaction for human ego-motion perception, in Multisensory Control of Posture, ed. by T. Mergner, F. Hlavacka, (Plenum, New York, 1995), pp. 157–168CrossRefGoogle Scholar
  37. 37.
    T. Mergner, C. Siebold, G. Schweigart, W. Becker, Human perception of horizontal trunk and head rotation in space during vestibular and neck stimulation. Exp. Brain Res. 85, 389–404 (1991)CrossRefGoogle Scholar
  38. 38.
    T. Mergner, A neurological view on reactive human stance control. Annu. Rev. Control. 34, 177–198 (2010)CrossRefGoogle Scholar
  39. 39.
    P.F. Meyer, L.I.E. Oddsson, C.J. De Luca, The role of plantar cutaneous sensation in unperturbed stance. Exp. Brain Res. 156, 505–512 (2004)CrossRefGoogle Scholar
  40. 40.
    P. Morasso, What is the use of the body schema for humanoid robots? Int. J. Mach. Conscious. 05, 75–94 (2013)CrossRefGoogle Scholar
  41. 41.
    R.J. Peterka, Sensorimotor integration in human postural control. J. Neurophysiol. 88, 1097–1118 (2002)CrossRefGoogle Scholar
  42. 42.
    R.J. Peterka, Simplifying the complexities of maintaining balance. IEEE Eng. Med. Biol. Mag. 22, 63–68 (2003)CrossRefGoogle Scholar
  43. 43.
    R.J. Peterka, Comparison of human and humanoid robot control of upright stance. J. Physiol. Paris 103, 149–158 (2009)CrossRefGoogle Scholar
  44. 44.
    R. Pintelon, J. Schoukens, System Identification: A Freqeuncy Domain Approach, 2nd edn. (Wiley, Hoboken, 2012)CrossRefGoogle Scholar
  45. 45.
    A. Prochazka, Proprioceptor models, in Encyclopedia of Computational Neuroscience, (Springer, New York, 2014), pp. 1–20Google Scholar
  46. 46.
    U. Proske, S.C. Gandevia, The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 92, 1651–1697 (2012)CrossRefGoogle Scholar
  47. 47.
    G. Schweigart, T. Mergner, Human stance control beyond steady state response and inverted pendulum simplification. Exp. Brain Res. 185, 635–653 (2008)CrossRefGoogle Scholar
  48. 48.
    K. Torre, E.-J. Wagenmakers, Theories and models for 1/f(beta) noise in human movement science. Hum. Mov. Sci. 28, 297–318 (2009)CrossRefGoogle Scholar
  49. 49.
    J.E. Visser, B.R. Bloem, Role of the basal ganglia in balance control. Neural Plast. 12, 161–174 (2005)CrossRefGoogle Scholar
  50. 50.
    V. Wilson, J.G. Melvill, Mammalian Vestibular Physiology (Plenum Press, New York, 1979)CrossRefGoogle Scholar
  51. 51.
    S. Yasui, L.R. Young, Perceived visual motion as effective stimulus to pursuit eye movement system. Science 190, 906–908 (1975)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.NeurologyUniversity ClinicsFreiburgGermany
  2. 2.Department of Oregon Health & Science UniversityCorvallisUSA
  3. 3.National Center for Rehabilitative Auditory ResearchVA Portland Health Care SystemPortlandUSA

Personalised recommendations