Humanoid Motion Optimization

  • Katja MombaurEmail author
Reference work entry


In this chapter, we discuss optimization as a way to generate whole-body motions for humanoid robots. Optimization helps to solve many difficulties related to humanoid motion generation: redundancy, feasibility, exploitation of physical capabilities, maintaining stability, as well as handling of underactuation and changing contacts with the environment. We present the formulation and numerical solution of optimal control problems for whole-body humanoid optimization with multiple phases discussing in detail different choices for objective functions and constraints to be considered. We summarize example applications of optimization for humanoid motion synthesis and motion imitation. Potential promising combinations of optimization with learning methods and movement primitives are discussed. In addition, we describe the inverse optimal control problem that helps to determine the optimality criterion underlying a recorded human motion, which then can serve as input for humanoid motion optimization. The formulation and numerical solution of these problems for locomotion examples are discussed, and example results of inverse optimal control for human locomotion based on whole-body models are shown. Further research directions in humanoid motion optimization are discussed. To give the full picture, we also mention some results for optimization in locomotion path generation and for template models which are not the focus of this chapter.



The research leading to these results has received funding from the EU seventh Framework Program (FP7/2007–2013) under grant agreement no 611909 (KoroiBot) and the German Excellence Initiative.


  1. 1.
    M. Ackermann, A.J. van den Bogert, Optimality principles for model-based prediction of human gait. J. Biomech. 43(6), 1055–1060 (2010)CrossRefGoogle Scholar
  2. 2.
    M. Ackermann, A.J. van den Bogert, Predictive simulation of gait at low gravity reveals skipping as the preferred locomotion strategy. J. Biomech. 45, 1293–1298 (2012)CrossRefGoogle Scholar
  3. 3.
    N. Aghasadeghi, T. Bretl, Maximum entropy inverse reinforcement learning in continuous state spaces with path integrals, in Proceedings of IEEE/RSJ IROS (2011)Google Scholar
  4. 4.
    S. Albrecht, C. Passenberg, M. Sobotka, A. Peer, M. Buss, M. Ulbrich, Optimization criteria for human trajectory formation in dynamic virtual environments, in Haptics: Generating and Perceiving Tangible Sensations. LNCS (Springer, Berlin/Heidelberg, 2010)CrossRefGoogle Scholar
  5. 5.
    R.M. Alexander, The gaits of bipedal and quadrupedal animals. Int. J. Robot. Res. 3(2), 49–59 (1984)CrossRefGoogle Scholar
  6. 6.
    R.M. Alexander, Optima for Animals (Princeton University Press, Princeton, 1996)Google Scholar
  7. 7.
    U.M. Ascher, R.M.M. Mattheij, R.D. Russel, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (SIAM, Philadelphia, 1995)Google Scholar
  8. 8.
    C.G. Atkeson, S. Schaal, Learning control in robotics. IEEE Robot. Autom. Mag. 17, 20–29 (2010)Google Scholar
  9. 9.
    B. Berret, E. Chiovetto, F. Nori, T. Pozzo, Evidence for composite cost functions in arm movement planning: an inverse optimal control approach. PLoS Comput. Biol. 7(10), e1002183 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    D.P. Bertsekas, Dynamic Programming and Optimal Control, vol. I, 3rd edn. (Athena Scientific, Belmont, 2005)Google Scholar
  11. 11.
    G. Bessonnet, S. Chessé, P. Sardain, Optimal gait synthesis of a seven-link planar biped. Int. J. Robot. Res. 23, 1059–1073 (2004)CrossRefGoogle Scholar
  12. 12.
    R. Blickhan, The spring mass model for running and hopping. J. Biomech. 22, 1217–1227 (1989)CrossRefGoogle Scholar
  13. 13.
    H.G. Bock, K.-J. Plitt, A multiple shooting algorithm for direct solution of optimal control problems, in IFAC World Congress (1984), pp. 242–247CrossRefGoogle Scholar
  14. 14.
    M. Brinkmann, Transfer menschlicher laufbewegungen auf modelle humanoider roboter mithilfe mathematischer optimierung. Master’s thesis. Heidelberg University, Heidelberg (2016)Google Scholar
  15. 15.
    M. Buss, M. Hardt, J. Kiener, M. Sobotka, M. Stelzer, O. von Stryk, D. Wollherr, Towards an autonomous, humanoid, and dynamically walking robot: modeling, optimal trajectory plannung, hardware architecture and experiments, in Proceedings of the 3rd International Conference on Humanoid Robots (2003)Google Scholar
  16. 16.
    G. Cavagna, N. Heglund, C. Taylor, Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am. J. Phys. 233, R243–R261 (1977)CrossRefGoogle Scholar
  17. 17.
    D. Clever, K. Mombaur, An inverse optimal control approach for the transfer of human walking motions in constrained environment to humanoid robots, in Proceedings of Robotics: Science and Systems (RSS) (2016)Google Scholar
  18. 18.
    D. Clever, M. Harant, K.H. Koch, K. Mombaur, D.M. Endres, A novel approach for the generation of complex humanoid walking sequences based on a combination of optimal control and learning of movement primitives. Robot. Auton. Syst. 83, 287–298 (2016)CrossRefGoogle Scholar
  19. 19.
    D. Clever, R.M. Schemschat, M.L. Felis, K. Mombaur, Inverse optimal control based identification of optimality criteria in whole-body human walking on level ground, in Proceedings of International Conference on Biomedical Robotics and Biomechatronics (BioRob2016) (2016)Google Scholar
  20. 20.
    D. Clever, M. Harant, K. Mombaur, M. Naveau, O. Stasse, D. Endres, Humanoid walking generation – a novel approach combining optimal control, movement primitives and learning (cocomopl) and its transfer to the real robot hrp-2, in IEEE RA Letters & ICRA (2017)Google Scholar
  21. 21.
    S. Coros, P. Beaudoin, M. van de Panne, Generalized biped walking control. ACM Trans. Graph. (TOG) 29, 130 (2010)CrossRefGoogle Scholar
  22. 22.
    H. Dai, R. Tedrake, Optimizing robust limit cycles for legged locomotion on unknown terrain, in Proceedings of the 51th IEEE Conference on Decision and Control (CDC 2012), Maui, 10–13 Dec 2012, pp. 1207–1213Google Scholar
  23. 23.
    H. Dai, A. Valenzuela, R. Tedrake, Whole-body motion planning with centroidal dynamics and full kinematics, in 14th IEEE-RAS International Conference on Humanoid Robots, (Humanoids 2014), Madrid, 18–20 Nov 2014, pp. 295–302Google Scholar
  24. 24.
    S. Dempe, N. Gadhi, Necessary optimality conditions for bilevel set optimization problems. Glob. Optim. 39(4), 529–542 (2007)MathSciNetCrossRefGoogle Scholar
  25. 25.
    M. Do, J. Schill, J. Ernesti, T. Asfour, Learn to wipe: a case study of structural bootstrapping from sensorimotor experience, in IEEE International Conference on Robotics and Automation (ICRA) (2014)Google Scholar
  26. 26.
    A. Dörr, N. Ratliff, J. Bohg, M. Toussaint, S. Schaal, Direct loss minimization inverse optimal control, in Proceedings of Robotics Sciece and Systems (RSS) (2015)Google Scholar
  27. 27.
    T. Erez, E. Todorov, Trajectory optimization for domains with contacts using inverse dynamics. in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2012) pp. 4914–4919Google Scholar
  28. 28.
    T. Erez, K. Lowrey, Y. Tassa, V. Kumar, S. Kolev, E. Todorov, An integrated system for real-time model predictive control of humanoid robots, in 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (IEEE, 2013), pp. 292–299Google Scholar
  29. 29.
    R. Featherstone, Rigid Body Dynamics Algorithms (Springer, New York, 2007)Google Scholar
  30. 30.
    M.L. Felis, RBDL: an efficient rigid-body dynamics library using recursive algorithms. Auton. Robot. 3, 1–17 (2016)Google Scholar
  31. 31.
    M.L. Felis, K. Mombaur, Synthesis of full-body 3-D human gait using optimal control methods, in IEEE International Conference on Robotics and Automation (ICRA 2016) (2016)Google Scholar
  32. 32.
    M.L. Felis, K. Mombaur, A. Berthoz, An optimal control approach to reconstruct human gait dynamics from kinematic data, in IEEE/RAS International Conference on Humanoid Robots (Humanoids 2015), Nov 2015, pp. 1044–1051Google Scholar
  33. 33.
    S. Feng, E.C.Whitman, X. Xinjilefu, C.G. Atkeson, Optimization-based full body control for the DARPA robotics challenge. J. Field Rob. 32(2), 293–312 (2015)CrossRefGoogle Scholar
  34. 34.
    S. Feng, X. Xinjilefu, C.G. Atkeson, J. Kim, Robust dynamic walking using online foot step optimization, in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016), Daejeon, 9–14 Oct 2016, pp. 5373–5378Google Scholar
  35. 35.
    T. Flash, B. Hochner, Motor primitives in vertebrates and invertebrates. Curr. Opin. Neurobiol. 15(6), 660–666 (2005)CrossRefGoogle Scholar
  36. 36.
    T. Flash, N. Hogan, The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703 (1984)CrossRefGoogle Scholar
  37. 37.
    H. Geyer, A. Seyfarth, R. Blickhan, Compliant leg behaviour explains basic dynamics of walking and running. Proc. R. Soc. Lond. B 2861–2876 (2006)CrossRefGoogle Scholar
  38. 38.
    A. Goswami, B. Thuilot, B. Espiau, A study of the passive gait of a compass-like biped robot symmetry and chaos. Int. J. Robot. Res. 17(12), 1282–1301 (1998)CrossRefGoogle Scholar
  39. 39.
    S. Grillner, Control of locomotion in bipeds, tetrapods, and sh, in Handbook of Physiology: Section I. The Nervous System, 2: Motor Control (1981), pp. 1179–1236Google Scholar
  40. 40.
    M. Hardt, K. Kreutz-Delgado, J.W. Helton, Optimal biped walking with a complete dynamical model, in Proceedings of the 38th Conference on Decision & Control (1999)Google Scholar
  41. 41.
    K. Hatz, Efficient numerical methods for hierarchical dynamic optimization with application to cerebral palsy gait modeling. PhD thesis, University of Heidelberg (2014)Google Scholar
  42. 42.
    K. Hatz, J.P. Schlöder, H.G. Bock, Estimating parameters in optimal control problems. SIAM J. Sci. Comput. 34(3), A1707–A1728 (2012)MathSciNetCrossRefGoogle Scholar
  43. 43.
    C. Heuberger, Inverse combinatorial optimization: a survey on problems, methods, and results. J. Comb. Optim. 8(3), 329–361 (2004)MathSciNetCrossRefGoogle Scholar
  44. 44.
    B. Houska, H.J. Ferreau, M. Diehl, ACADO toolkit – an open source framework for automatic control and dynamic optimization. Opt. Control Appl. Meth. 32(3), 298–312 (2011)MathSciNetCrossRefGoogle Scholar
  45. 45.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, in IEEE International Conference on Robotics & Automation (2003)Google Scholar
  46. 46.
    R. Kalman, When is a linear control system optimal? Trans. ASME J. Basic Eng. Ser. D 86, 51–60 (1964)CrossRefGoogle Scholar
  47. 47.
    K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawaa, T. Kawasaki, M. Hirata, K. Akachi, T. Isozumi, Humanoid robot HRP-2, in Proceedings of the IEEE International Conference on Robotics & Automation (2004)Google Scholar
  48. 48.
    M. Karklinsky, Timing and geometry of planning and execution of human movements. PhD thesis, Weizmann (2016)Google Scholar
  49. 49.
    M. Karklinsky, M. Naveau, A. Mukovskiy, O. Stasse, T. Flash, P. Souères, Robust human-inspired power law trajectories for humanoid hrp-2 robot, in IEEE/RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob 2016), Singapore (IEEE, 2016), pp. 106–113Google Scholar
  50. 50.
    J. Kim, N.S. Pollard, C.G. Atkeson, Quadratic encoding of optimized humanoid walking, in 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2013), Atlanta, 15–17 Oct 2013, pp. 300–306Google Scholar
  51. 51.
    J. Kober, J. Peters, Imitation and reinforcement learning – practical algorithms for motor primitive learning in robotics. IEEE Robot. Autom. Mag. 17(2), 55–62 (2010)CrossRefGoogle Scholar
  52. 52.
    K.H. Koch, Using model-based optimal control for conceptional motion generation for the humannoid robot HRP-2 14 and design investigations for exo-skeleton. PhD thesis, University Heidelberg (2015)Google Scholar
  53. 53.
    K.H. Koch, K. Mombaur, P. Souères, Optimization-based walking generation for humanoids, in IFAC-SYROCO 2012 (2012)Google Scholar
  54. 54.
    K.H. Koch, K. Mombaur, P. Souères, Studying the effect of different optimization criteria on humanoid walking motions, in Simulation, Modeling, and Programming for Autonomous Robots, ed. by I. Noda, N. Ando, D. Brugali, J.J. Kuffner. Lecture Notes in Computer Science, vol. 7628 (Springer, Berlin/Heidelberg, 2012), pp. 221–236CrossRefGoogle Scholar
  55. 55.
    K.H. Koch, K. Mombaur, P. Souères, O. Stasse, Optimization based exploitation of the ankle elasticity of HRP-2 for overstepping large obstacles, in IEEE/RAS International Conference on Humanoid Robots (Humanoids 2014) (2014)Google Scholar
  56. 56.
    K.H. Koch, D. Clever, K. Mombaur, D.M. Endres, Learning movement primitives from optimal and dynamically feasible trajectories for humanoid walking, in IEEE/RAS International Conference on Humanoid Robots (Humanoids 2015) (2015), pp. 866–873Google Scholar
  57. 57.
    A Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Bennewitz, N. Mansard, Experiments with mujoco on HRP-2, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2015) (2015)Google Scholar
  58. 58.
    L. Kovar, M. Gleicher, F. Pighin, Motion graphs. ACM Trans. Graph. 21(3), 473–482 (2002)Google Scholar
  59. 59.
    KoroiBot Motion Capture Database (2016).
  60. 60.
    P. Kryczka, P. Kormushev, N. Tsagarakis, D.G. Caldwell, Online regeneration of bipedal walking gait optimizing footstep placement and timing, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2015)Google Scholar
  61. 61.
    M. Kudruss, M. Naveau, O. Stasse, N. Mansard, C. Kirches, P. Souères, K. Mombaur, Optimal control for whole-body motion generation using center-of-mass dynamics for predefined multi-contact configurations, in IEEE/RAS International Conference on Humanoid Robots (Humanoids 2015), Seoul (IEEE, 2015), pp. 684–689Google Scholar
  62. 62.
    I. Kudruss, M. Koryakovskiy, W. Caarls, R. Babuska, C. Kirches, K. Mombaur, J. Schlöder, H. Vallery, Benchmarking model-free and model-based optimal control. Robot. Auton. Syst. 92, 81–90, 2017Google Scholar
  63. 63.
    S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen, P. Marion, R. Tedrake, Optimization-based locomotion planning, estimation, and control design for the Atlas humanoid robot. Auton. Robot. 1–27 (2015)Google Scholar
  64. 64.
    S.H. Lee, J. Kim, F.C. Park, M. Kim, J.E. Bobrow, Newton-type algorithms for dynamics-based robot movement optimization. IEEE Trans. Robot. 21(4), 657–667 (2005)CrossRefGoogle Scholar
  65. 65.
    D.B. Leineweber, I. Bauer, H.G. Bock, J.P. Schlöder, An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization – Part I: theoretical aspects – Part II: software aspects and applications. Comput. Chem. Eng. 27, 157–174 (2003)Google Scholar
  66. 66.
    S. Lengagne, A. Kheddar, E. Yoshida, Generation of optimal dynamic multi-contact motions: application to humanoid robots. IEEE Trans. Robot. (2011)Google Scholar
  67. 67.
    S. Lengagne, J. Vaillant, E. Yoshida, A. Kheddar, Generation of whole-body optimal dynamic multi-contact motions. Int. J. Robot. Res. 32(9–10), 1104–1119 (2013)CrossRefGoogle Scholar
  68. 68.
    S. Levine, V. Koltun, Guided policy search, in ICML (2013)Google Scholar
  69. 69.
    C.K. Liu, A. Hertzmann, Z. Popovic, Learning physics-based motion style with inverse optimization. ACM Trans. Graph. (SIGGRAPH 2005) 24, 1071 (2005)Google Scholar
  70. 70.
    L. Liu, K. Yin, M. van de Panne, T. Shao, W. Xu, Sampling-based contact-rich motion control. ACM Trans. Graph. 29(4), Article 128 (2010)CrossRefGoogle Scholar
  71. 71.
    Z.-Q. Luo, J.-S. Pang, D. Ralph, Mathematical Programs with Equilibrium Constraints (Cambridge University Press, Cambridge, 1996)Google Scholar
  72. 72.
    J. Mainprice, R. Hayne, D. Berenson, Predicting human reaching motion in collaborative tasks using inverse optimal control and iterative re-planning, in 2015 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2015), pp. 885–892Google Scholar
  73. 73.
    J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, P. Abbeel, Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding, in Proceedings of the International Conference on Robotics and Automation (ICRA) (2010)Google Scholar
  74. 74.
    T. McGeer, Passive dynamic walking. Int. J. Robot. Res. 9, 62–82 (1990)CrossRefGoogle Scholar
  75. 75.
    T. McGeer, Passive Walking with Knees, vol. 2 (1990), pp. 1640–1645Google Scholar
  76. 76.
    S. Miossec, K. Yokoi, A. Kheddar, Development of a software for motion optimization of robots – application to the kick motion of the HRP-2 robot, in IEEE International Conference on Robotics & Automation (2006)Google Scholar
  77. 77.
    K. Miura, M. Morisawa, S. Nakaoka, F. Kanehiro, K. Harada, K. Kaneko, S. Kajia, Robot motion remix based on motion capture data—towards human-like locomotion of humanoid robots, in IEEE-RAS International Conference on Humanoid Robots (2009), pp. 596–603Google Scholar
  78. 78.
    K. Mombaur, Using optimization to create self-stable human-like running. Robotica 27, 321–330 (2009). Published online June 2008CrossRefGoogle Scholar
  79. 79.
    K. Mombaur, D. Clever, Inverse optimal control as a tool to uderstand human movement, in Geometric and Numerical Foundations of Movements, vol. xx. To appear of STAR series (Springer, Berlin/Heidelberg, 2016)Google Scholar
  80. 80.
    K.D. Mombaur, H.G. Bock, J.P. Schlöder, R.W. Longman, Human-like actuated walking that is asymptotically stable without feedback, in Proceedings of IEEE International Conference on Robotics and Automation, Seoul, May 2001, pp. 4128–4133Google Scholar
  81. 81.
    K.D. Mombaur, R.W. Longman, H.G. Bock, J.P. Schlöder, Open-loop stable running. Robotica 23(01), 21–33 (2005)CrossRefGoogle Scholar
  82. 82.
    K. Mombaur, A. Truong, J.-P. Laumond, From human to humanoid locomotion an inverse optimal control approach. Auton. Robot. 28(3), 369–383 (2010)CrossRefGoogle Scholar
  83. 83.
    K. Mombaur, A.H. Olivier, A. Crétual, Forward and inverse optimal control of bipedal running, in Modeling, Simulation and Optimization of Bipedal Walking. Volume 18 of Cognitive Systems Monographs (Springer, Berlin/Heidelberg, 2013), pp.165–179Google Scholar
  84. 84.
    K. Mombaur, A. Kheddar, K. Harada, T. Buschmann, C. Atkeson, TC spotlight: model-based optimization for robotics. IEEE Robot. Autom. Mag. 21, 24–161 (2014)Google Scholar
  85. 85.
    I. Mordatch, J.M. Wang, E. Todorov, V. Koltun, Animating human lower limbs using contact-invariant optimization. ACM Trans. Graph. (TOG) 32(6), 203 (2013)CrossRefGoogle Scholar
  86. 86.
    T. Park, S. Levine, Inverse optimal control for humanoid locomotion, in Robotics Science and Systems-Workshop on Inverse Optimal Control and Robotic Learning from Demonstration (2013)Google Scholar
  87. 87.
    F.C. Park, J.E. Bobrow, S.R. Ploen, A lie group formulation of robot dynamics. Int. J. Robot. Res. 14(6), 609–618 (1995)CrossRefGoogle Scholar
  88. 88.
    L.S. Pontryagin, V.G. Boltayanskii, R.V. Gamkrelidze, E.F. Mishchenko, The Mathematical Theory of Optimal Processes (Wiley, New York, 1962)Google Scholar
  89. 89.
    M.J.D. Powell, The BOBYQA algorithm for bound constrained optimization without derivatives. Report No. DAMTP 2009/NA06, Centre for Mathematical Sciences, University of Cambridge (2009)Google Scholar
  90. 90.
    R. Rosen, Optimality Principles in Biology (Springer Science+Business Media, LLC, Boston, 1967)CrossRefGoogle Scholar
  91. 91.
    L. Roussel, C. Canudas de Wit, A. Goswami, Generation of energy optimal complete gait cycles for biped robots, in Proceedings IEEE International Conference on Robotics and Automation (1998)Google Scholar
  92. 92.
    E. Schuitema, M. Wisse, T. Ramakers, P. Jonker, The design of Leo: a 2d bipedal walking robot for online autonomous reinforcement learning, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2010)Google Scholar
  93. 93.
    J. Schulman, J. Ho, C. Lee, P. Abbeel, Learning from demonstrations through the use of non-rigid registration, in Proceedings of the 16th International Symposium on Robotics Research (ISRR) (2013)Google Scholar
  94. 94.
    G. Schultz, K. Mombaur, Modeling and optimal control of human-like running. Trans. Mechatron. 15(5), 783–792 (2010)CrossRefGoogle Scholar
  95. 95.
    C.S. Sherrington, Flexion-reflex of the limb, crossed extension reflex and reflex stepping and standing. J. Physiol. 40, 28–121 (1910)CrossRefGoogle Scholar
  96. 96.
    W. Suleiman, E. Yoshida, J.-P. Laumond, A. Monin, On humanoid motion optimization, in IEEE-RAS International Conference on Humanoid Robots (2007), pp. 180–187Google Scholar
  97. 97.
    W. Suleiman, E. Yoshida, F. Kanehiro, J.-P. Laumond, A. Monin, On human motion imitation by humanoid robot, in IEEE International Conference on Robotics and Automation, 2008. ICRA 2008 (IEEE, 2008) pp. 2697–2704Google Scholar
  98. 98.
    Y. Tassa, T. Erez, E. Todorov, Synthesis and stabilization of complex behaviors through online trajectory optimization, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)Google Scholar
  99. 99.
    Ö. Terlemez, S. Ulbrich, C. Mandery, M. Do, N. Vahrenkamp, T. Asfour, Master motor map (MMM) framework and toolkit for capturing, representing, and reproducing human motion on humanoid robots, in IEEE/RAS International Conference on Humanoid Robots (Humanoids 2014) (2014), pp. 894–901Google Scholar
  100. 100.
    E. Todorov, Implicit nonlinear complementarity: a new approach to contact dynamics, in 2010 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2010), pp. 2322–2329Google Scholar
  101. 101.
    E. Todorov, T. Erez, Y. Tassa, Mujoco: a physics engine for model-based control, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2012), pp. 5026–5033Google Scholar
  102. 102.
    O. von Stryk, Numerische Lösung optimaler Steuerungsprobleme: diskretisierung, Parameteroptimierung und Berechnung der adjungierten Variablen. Number 441 (VDI Verlag, Düsseldorf, 1994)Google Scholar
  103. 103.
    P.-B. Wieber, F. Billet, L. Boissieux, R. Pissard-Gibollet, The HuMAnS toolbox, a homogenous framework for motion capture, analysis and simulation, in Internal Symposium on the 3D Analysis of Human Movement (2006)Google Scholar
  104. 104.
    K. Yamane, Y. Nakamura, Dynamics filter—concept and implementation of on-line motion generator for human figures. IEEE Trans. Robot. Autom. 19(3), 421–432 (2003)CrossRefGoogle Scholar
  105. 105.
    J.J. Ye, Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 307, 350–369 (2005)MathSciNetCrossRefGoogle Scholar
  106. 106.
    T. Yoshikawa, Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(2), 3–9 (1985)Google Scholar
  107. 107.
    Y. Zheng, K. Yamane, Adapting human motions to humanoid robots through time warping based on a general motion feasibility index, in IEEE International Conference on Robotics and Automation (2015), pp. 6281–6288Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Optimization, Robotics and Biomechanics (ORB), Institute of Computer Engineering (ZITI)University of HeidelbergHeidelbergGermany

Personalised recommendations