Introduction: Motion Planning, Optimization, and Biped Gait Generation

  • Eiichi YoshidaEmail author
  • Katja Mombaur
Reference work entry


This introduction briefly overviews the common issues we encounter when we want to plan the motion of a humanoid robot to achieve its goal in different situations. Essential techniques to compute humanoid motions are described in this Part, which are mainly motion planning, motion optimization and bipedal gait generation. This Part offers a complete set of state-of-the-art methodologies to tackle a variety of the humanoid motion planning problems.


  1. 1.
  2. 2.
    H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementation (MIT Press, Cambridge, 2006)Google Scholar
  3. 3.
    Defense Advanced Resaerch Projects Agency, DARPA robotics challenge (2015),
  4. 4.
    K. Harada, E. Yoshida, K. Yokoi, Motion Planning for Humanoid Robots (Springer, 2010),
  5. 5.
    D. Hsu, J.C. Latombe, R. Motwani, Path planning in expansive configuration spaces. Int. J. Comput. Geom. Appl. 4, 495–512 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Kajita, H. Hirukawa, K. Harada, K. Yokoi, Introduction to Humanoid Robotics (Springer, Berlin/Heidelberg, 2014)Google Scholar
  7. 7.
    K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka, K. Yokoi, Cybernetic human HRP-4C, in Proceedings 2009 IEEE-RAS International Conference on Humanoid Robots, 2009, pp. 7–14Google Scholar
  8. 8.
    L. Kavraki, P. Svestka, J.C. Latombe, M. Overmars, Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)CrossRefGoogle Scholar
  9. 9.
    J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, H. Inoue, Dynamically-stable motion planning for humanoid robots. Auton. Robot. 12(1), 105–118 (2002)Google Scholar
  10. 10.
    J.C. Latombe, Robot Motion Planning (Kluwer Academic, Boston/Dordrecht/London, 1991)CrossRefGoogle Scholar
  11. 11.
    J.P. Laumond (ed.), Robot Motion Planning and Control. Lectures Notes in Control and Information Sciences, vol. 229 (Springer, London, 1998)Google Scholar
  12. 12.
    S. LaValle, Planning Algorithm (Cambridge University Press, New York, 2006)Google Scholar
  13. 13.
    S. LaValle, J. Kuffner, Rapidly-exploring random trees: progress and prospects, in Algorithmic and Computational Robotics: New Directions, ed. by K.M. Lynch, D. Rus (A K Peters, Natick, 2001), pp. 293–308Google Scholar
  14. 14.
    K. Miura, E. Yoshida, Y. Kobayashi, Y. Endo, F. Kanehiro, K. Homma, I. Kajitani, Y. Matsumoto, T. Tanaka, Humanoid robot as an evaluator of assistive devices, in Proceedings of 2013 IEEE International Conference Robotics and Automation, 2013, pp. 671–677Google Scholar
  15. 15.
    Y. Nakamura, Advanced Robotics: Redundancy and Optimization (Addison-Wesley Longman Publishing, Boston, 1991)Google Scholar
  16. 16.
    N. Pollard, M.R. Jessica Hodgins, C. Atkeson, Adapting human motion for the control of a humanoid robot, in Proceedings of 2002 IEEE International Conference on Robotics and Automation, 2002, pp. 1390–1397Google Scholar
  17. 17.
    B. Siciliano, J.J.E. Slotine, A general framework for managing multiple tasks in highly redundant robotic systems, in Proceedings of IEEE International Conference on Advanced Robotics, 1991, pp. 1211–1216Google Scholar
  18. 18.
    P.B. Wieber, Viability and predictive control for safe locomotion, in Proceedings of 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp. 1103–1108Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.CNRS-AIST JRL (Joint Robotics Laboratory), UMI3218/RLNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Optimization, Robotics and Biomechanics (ORB), Institute of Computer Engineering (ZITI)University of HeidelbergHeidelbergGermany

Personalised recommendations