Advertisement

Free Simulation Software and Library

  • Barkan Ugurlu
  • Serena Ivaldi
Reference work entry

Abstract

With the advent of powerful computation technologies and efficient algorithms, simulators became an important tool in most engineering areas. The field of humanoid robotics is no exception; there have been numerous simulation tools developed over the last two decades to foster research and development activities. With this in mind, this chapter is written to introduce and discuss the current-day open-source simulators that are actively used in the field. Using a developer-based feedback, we provide an outline regarding the specific features and capabilities of the open-source simulators, with a special emphasis on how they correspond to recent research trends in humanoid robotics. The discussion is centered around the contemporary requirements in humanoid simulation technologies with regard to the future of the field.

References

  1. 1.
    B. Lint, T. Agerwala, Communication issues in the design and analysis of parallel algorithms. IEEE Trans. Softw. Eng. SE-7(2), 174–188 (1981)CrossRefGoogle Scholar
  2. 2.
    C.S.G. Lee, P.R. Chang, Efficient parallel algorithms for robot forward dynamics computation. IEEE Trans. Syst. Man Cybern. 18(2), 238–251 (1988)MathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Fijany, A. Bejczy, A class of parallel algorithms for computation of the manipulator inertia matrix. IEEE Trans. Robot. Autom. 5(2), 600–615 (1989)CrossRefGoogle Scholar
  4. 4.
    S. McMillan, D.E. Orin, P. Sadayappan, Toward super-real-time simulation of robotic mechanisms using a parallel integration method. IEEE Trans. Syst. Man Cybern. 22(2):384–391 (1992)CrossRefGoogle Scholar
  5. 5.
    A. Fijany, I. Sharf, G.M.T. D’Eleuterio, Parallel o(log n) algorithms for computation of manipulator forward dynamics. IEEE Trans. Robot. Autom. 11(3), 389–400 (1989)CrossRefGoogle Scholar
  6. 6.
    A. Aghili, A unified approach for inverse and direct dynamics of constrained multibody systems based on linear projection operator: applications to control and simulation. IEEE Trans. Robot. 21(5), 834–849 (2005)CrossRefGoogle Scholar
  7. 7.
    K. Yamane, Y. Nakamura, Comparative study on serial and parallel forward dynamics algorithms for kinematic chains. Int. J. Robot. Res. 28(5), 622–629 (2009)CrossRefGoogle Scholar
  8. 8.
    J.Y.S. Luh, M.W. Walker, R.P. Paul, On-line computation scheme for mechanical manipulator. J. Dyn. Syst. Meas. Control ASME Trans. 102(2), 69–76 (1988)Google Scholar
  9. 9.
    R. Featherstone, The calculation of robot dynamics using articulated-body inertias. Int. J. Robot. Res. 2(1), 13–30 (1983)CrossRefGoogle Scholar
  10. 10.
    O. Khatib, A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE Trans. Robot. Autom. 3(1), 43–53 (1988)Google Scholar
  11. 11.
    G. Rodriguez, Kalman filtering, smoothing, and recursive robot arm forward and inverse dynamics. IEEE Trans. Robot. Autom. 3(6), 624–639 (1988)CrossRefGoogle Scholar
  12. 12.
    R. Featherstone, A beginner’s guide to 6-D vectors (part 1). IEEE Robot. Autom. Mag. 17(3), 83–94 (2010)CrossRefGoogle Scholar
  13. 13.
    M.W. Walker, D.E. Orin, Efficient dynamic computer simulation of robotics mechanisms. J. Dyn. Syst. Meas. Control ASME Trans. 104(2), 205–211 (1988)CrossRefGoogle Scholar
  14. 14.
    Y. Fujimoto, A. Kawamura, Robust biped walking with force interaction control between foot and ground, in Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Leuven, May 1998, pp. 2030–2035Google Scholar
  15. 15.
    J. Nakanishi, M. Mistry, S. Schaal, Inverse dynamics control with floating base and constraints, in Proceedings of IEEE International Conference on Robotics and Automation(ICRA), Rome, May 2007, pp. 1942–1947Google Scholar
  16. 16.
    M. Mistry, J. Buchli, S. Schaal, Inverse dynamics control of floating base systems using orthogonal decomposition, in Proceedings IEEE International Conference on Robotics and Automation(ICRA), Anchorage, May 2010, pp. 3406–3412Google Scholar
  17. 17.
    Y. Nakamura, H. Hirukawa, K. Yamane, S. Kajta, K. Fujiwara, F. Kanehiro, F. Nagashima, Y. Murase, M. Inaba, Humanoid robot simulator for the Meti HRP project. Robot. Auton. Syst. 37(2-3), 101–114 (2001)CrossRefGoogle Scholar
  18. 18.
    Y. Fujimoto, A. Kawamura, Simulation of an autonomous biped walking robot including environmental force interaction. IEEE Robot. Autom. Mag. 5(2), 33–42 (1998)CrossRefGoogle Scholar
  19. 19.
    S. Ivaldi, J. Peters, V. Padois, F. Nori, Tools for simulating humanoid robot dynamics: a survey based on user feedback, in Proceedings of IEEE International Conference on Humanoid Robotics, Madrid, Dec 2014, pp. 842–849Google Scholar
  20. 20.
    N. Koenig, A. Howard, Design and use paradigms for Gazebo, an open-source multi-robot simulator, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Sept 2004, pp. 2149–2154Google Scholar
  21. 21.
    E. Rohmer, S.P.N. Singh, M. Freese, V-rep: a versatile and scalable robot simulation framework, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Nov 2013, pp. 1321–1326Google Scholar
  22. 22.
    O. Michel, Webots: professional mobile robot simulation. J. Adv. Robot. Syst. 1(1), 39–42 (2004)Google Scholar
  23. 23.
    B. Ugurlu, J.A. Saglia, N.G. Tsagarakis, S. Morfey, D.G. Caldwell, Bipedal hopping pattern generation for passively compliant humanoids: exploiting the resonance. IEEE Trans. Ind. Electron. 61(10), 5431–5443 (2014)CrossRefGoogle Scholar
  24. 24.
    K. Bouyarmane, J. Vaillant, F. Keith, A. Kheddar, Exploring humanoid robot locomotion capabilities in virtual disaster response scenarios, in Proceedings of IEEE International Conference on Humanoid Robotics, Osaka, Dec 2012, pp. 337–342Google Scholar
  25. 25.
    B. Ugurlu, A. Kawamura, A unified control frame for stable bipedal walking, in Proceedings of IEEE International Conference on Industrial Electronics and Control(IECON), Porto, Nov 2009, pp. 4167–4172Google Scholar
  26. 26.
    K. Hauser, Fast interpolation and time-optimization with contact. Int. J. Robot. Res. 33(9), 1231–1250 (2014)CrossRefGoogle Scholar
  27. 27.
    F. Kanehiro, H. Hirukawa, S. Kajita, Openhrp: open architecture humanoid robotics platform. Int. J. Robot. Res. 23(2), 155–165 (2004)CrossRefGoogle Scholar
  28. 28.
    K. Yamane, Y. Nakamura, Parallel o(log n) algorithm for dynamics simulation of humanoid robots, in Proceedings of IEEE International Conference on Humanoid Robotics, Genoa, Dec 2006, pp. 554–559Google Scholar
  29. 29.
    S. Nakaoka, S. Hattori, F. Kanehiro, S. Kajita, H. Hirukawa, Constraint-based dynamics simulator for humanoid robots with shock absorbing mechanisms, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Diego, Oct 2007, pp. 3641–3647Google Scholar
  30. 30.
    P. Fisette, J.C. Samin, Robotran: symbolic generation of multi-body system dynamic equations. Adv. Multibody Syst. Dyn. 20, 373–378 (1993)Google Scholar
  31. 31.
    C.E. Aguero, N. Koenig, H. Boyer I. Chen, S. Peters, J. Hsu, B. Gerkey, S. Paepcke, J.L. Rivero, J. Manzo, E. Krotkov, G. Pratt, Inside the virtual robotics challenge: Simulating real-time robotic disaster response. IEEE Trans. Autom. Sci. Eng. 12(2), 494–506 (2015)CrossRefGoogle Scholar
  32. 32.
    E. Mingo Hoffman, S. Traversaro, A. Rocchi, M. Ferrati, A. Settimi, F. Romano, L. Natale, A. Bicchi, F. Nori, N. Tsagarakis, Yarp based plugins for gazebo simulator, in Modelling and Simulation for Autonomous Systems Workshop (MESAS), Rome, 2014Google Scholar
  33. 33.
    G. Echeverria, S. Lemaignan, A. Degroote, S. Lacroix, M. Karg, P. Koch, C. Lesire, S. Stinckwich, Simulating complex robotic scenarios with Morse, in Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), Tsukuba, 2012, pp. 197–208Google Scholar
  34. 34.
    M. Freese, S. Singh, A. Degroote, S. Ozaki, N. Matsuhira, Virtual robot experimentation platform v-rep: a versatile 3d robot simulator, in Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), Darmstadt, 2010, pp. 51–62Google Scholar
  35. 35.
    S. Schaal, The SL simulation and real-time control software package. Technical report, University of Southern California, California, 2001Google Scholar
  36. 36.
    A. Billard, Y. Epars, S. Calinon, S. Schaal, G. Cheng, Discovering optimal imitation strategies. Robot. Auton. Syst. 47(2-3), 69–77 (2004)CrossRefGoogle Scholar
  37. 37.
    R. Diankov, J. Kuffner, OpenRAVE: a planning architecture for autonomous robotics. Technical report, Robotics Institute, Carnegie Mellon University, Pittsburgh, 2008Google Scholar
  38. 38.
    Q.-C Pham, Y. Nakamura, Time-optimal path parameterization for critically dynamic motions of humanoid robots, in Proceedings of IEEE International Conference on Humanoid Robotics, Osaka, Nov 2012, pp. 165–170Google Scholar
  39. 39.
    R. Featherstone, Rigid Body Dynamics Algorithms (Springer, Secaucus, 2007)Google Scholar
  40. 40.
    R. Tedrake, Drake – A planning, control, and analysis toolbox for nonlinear dynamical systems. Technical report, Massachusetts Institute of Technology, Massachusetts, 2014Google Scholar
  41. 41.
    K. Caluwaerts, J. Despraz, A. Iscen, A.P. Sabelhaus, J. Bruce, B. Schrauwen, V. SunSpiral, Design and control of compliant tensegrity robots through simulation and hardware validation. J. R. Soc. Interface 11(98), 1742–1757 (2014)CrossRefGoogle Scholar
  42. 42.
    T. Koolen, S. Bertrand, G. Thomas, T. Wu, J. Smith, J. Englsberger, J. Pratt, Design of a momentum-based control framework and application to the humanoid robot atlas. Int. J. Humanoid Rob. 13(1), 1650007–1650034 (2016)CrossRefGoogle Scholar
  43. 43.
    S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan, A. Habib, C.T. John, E. Guendelman, D.G. Thelen, Opensim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)CrossRefGoogle Scholar
  44. 44.
    E. Drumwright, A fast and stable penalty method for rigid body simulation. IEEE Trans. Vis. Comput. Graph. 14(1), 231–240 (2008)CrossRefGoogle Scholar
  45. 45.
    V. Tikhanoff, A. Cangelosi, G. Metta, Integration of speech and action in humanoid robots: icub simulation experiments. IEEE Trans Auton. Ment. Dev. 3(1), 17–29 (2010)CrossRefGoogle Scholar
  46. 46.
    E. Drumwright, D.A. Shell, Extensive analysis of linear complementarity problem (LCP) solver performance on randomly generated rigid body contact problems, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, 2012, pp. 5034–5039Google Scholar
  47. 47.
    E. Todorov, T. Erez, Y. Tassa, MuJoCo: a physics engine for model-based control, in Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS), Algarve, Oct 2012, pp. 5026–5033Google Scholar
  48. 48.
    R. Featherstone, D.E. Orin, Dynamics, in Handbook of Robotics, ed. by B. Siciliano, O. Khatib, 2nd edn. (Springer International Publishing, 2008), pp. 35–65. ISBN 978-3-319-32950-7Google Scholar
  49. 49.
    C. Canudas de Wit, H. Olsson, K.J. Astrom, P. Lischinsky, A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995)Google Scholar
  50. 50.
    T. Erez, Y. Tassa, E. Todorov, Simulation tools for model-based robotics: comparison of Bullet, Havok, MuJoCo, ODE and PhysX, in Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Seattle, May 2015Google Scholar
  51. 51.
    F. Largilliere, V. Verona, E. Coevoet, M. Sanz-Lopez, J. Dequidt, C. Duriez, Real-time control of soft-robots using asynchronous finite element modeling, in ICRA 2015, Seattle, 2015, p. 6Google Scholar
  52. 52.
    A. Del Prete, N. Mansard, Robustness to joint-torque tracking errors in task-space inverse dynamics. IEEE Trans. Robot. 32(5), 1091–1105 (2016)CrossRefGoogle Scholar
  53. 53.
    A. Cully, J. Clune, D. Tarapore, J.B. Mouret, Robots that can adapt like animals. Nature 521, 503–507 (2015)CrossRefGoogle Scholar
  54. 54.
    S. Ivaldi, J. Babič, M. Mistry, R. Murphy, Special issue on whole-body control of contacts and dynamics for humanoid robots. Auton. Robots 40(3), 425–428 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringOzyegin UniversityIstanbulTurkey
  2. 2.InriaVillers-les-NancyFrance
  3. 3.Intelligent Autonomous Systems LabTU DarmstadtGermany

Personalised recommendations