Advertisement

Toyota Partner Robots

  • Masahiro Doi
  • Yuichiro Nakajima
Reference work entry

Abstract

With the desire to know the mechanism of human motion and to realize a robot close to human, we started studying humanoid robots in 2000 and have developed a wide variety of humanoids. In pursuit of the dexterity like human, the musical performance humanoids were developed that could play the trumpet, drum, violin, and the like. Based on the concept of novel mobility to transport a person on uneven ground and stairs by walking bipedally, the mountable humanoid named “i-foot” was created. Inspired from human body structure, the wire-driven humanoid was designed and constructed, which imitated the human musculoskeletal mechanism. The interest in the dynamic and refined human running motion motivated us to build the high motion performance humanoid that could achieve fast-running locomotion. Then, focusing on joint flexibility of human, we are currently working on the torque-controlled humanoid composed of the developed drive module using a high-sensitivity torque sensor. This chapter presents the details about these humanoid robots and takes a look back over the history of our robot development.

References

  1. 1.
    D. Chadefaux, J.-L. Le Carrou, M.-A. Vitrani, S. Billout, L. Quartier, Harp plucking robotic finger. In Proceedings of IEEE-RSJ International Conference on Intelligent Robotics and Systems, 2012, pp. 4886–4891Google Scholar
  2. 2.
    F. Forget, K.G. Esclasse, R. Gelin, N. Mansard, O. Stasse, Implementation, Identification and Control of an Efficient Electric Actuator for Humanoid Robots (2017, preprint)Google Scholar
  3. 3.
    E. Guglielmino, T. Sireteanu, C.W. Stammers, G. Gheorghe, M. Giuclea, Semi-active Suspension Control (Springer, London, 2008)Google Scholar
  4. 4.
    K. Hashimoto, Y. Sugahara, H.-O. Lim, A. Takanishi, Biped landing pattern modification method and walking experiments in outdoor environment. J. Robot. Mechatronics 20(5), 775–784 (2008)Google Scholar
  5. 5.
    G. Hirzinger, A. Albu-Schaffer, M. Hahnle, I. Schaefer, N. Sporer, On a new generation of torque controlled light-weight robots. In Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, 2001, pp. 3356–3363Google Scholar
  6. 6.
    S. Kagami, T. Kitagawa, K. Nishiwaki, T. Sugihara, M. Inaba, H. Inoue, A fast dynamically equilibrated walking trajectory generation method of humanoid robot. Auton. Robot. 12(1), 71–82 (2002)Google Scholar
  7. 7.
    S. Kajita, O. Matsumoto, M. Saigo, Real-time 3d walking pattern generation for a biped robot with telescopic legs. In Proceedings of the IEEE International Conference on Robotics and Automation, 2001, pp. 2299–2306Google Scholar
  8. 8.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoiand, H. Hirukawa, Resolved momentum control: humanoid motion planning based on the linear and angular momentum. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003, pp. 1644–1650Google Scholar
  9. 9.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point. In Proceedings of the IEEE International Conference on Robotics and Automation, 2003, pp. 1620–1626Google Scholar
  10. 10.
    S. Kajita, T. Nagasaki, K. Kaneko, K. Yokoi, K. Tanie, A running controller of humanoid biped HRP-2LR. In Proceedings of the IEEE International Conference on Robotics and Automation, 2005, pp. 618–624Google Scholar
  11. 11.
    S. Katsura, K. Ohnishi, Feedback of reaction force in haptics. In Proceedings of the IEEE International Conference on Industrial Technology, vol. 1, 2003, pp. TU13–TU20Google Scholar
  12. 12.
    T. Kawakami, K. Ayusawa, H. Kaminaga, Y. Nakamura, High-fidelity joint drive system by torque feedback control using high precision linear encoder. In Proceedings of IEEE International Conference on Robotics and Automation, 2010, pp. 3904–3909Google Scholar
  13. 13.
    J. Kim, J. Lee, J. Oh, Experimental realization of dynamic walking for a human-riding biped robot, hubo fx-1. Adv. Robot. 21(3), 461–484 (2007)CrossRefGoogle Scholar
  14. 14.
    J. Kim, H. Kwak, H. Lee, K. Seo, B. Lim, M. Lee, J. Lee, K. Roh, Balancing control of a biped robot. In Proceedings of the IEEE-RAS International Conference on Systems, Man, and Cybernetics, 2012, pp. 2756–2761Google Scholar
  15. 15.
    Y. Kuroki, Y. Kosaka, T. Takahashi, E. Niwa, H. Kaminaga, Y. Nakamura, Cr-n alloy thin-film based torque sensors and joint torque servo systems for compliant robot control. In Proceedings of the IEEE International Conference on Robotics and Automation, 2013, pp. 4954–4959Google Scholar
  16. 16.
    M. Mellody, G.H. Wakefield, A modal distribution study of violin vibrato. In International Computer Music Conference Proceedings, 1997Google Scholar
  17. 17.
    I. Mizuuchi, Y. Nakanishi, Y. Sodeyama, Y. Namiki, T. Nishino, N. Muramatsu, J. Urata, K. Hongo, T. Yoshikai, M. Inaba, An advanced musculoskeletal humanoid kojiro. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots, 2007, pp. 294–299Google Scholar
  18. 18.
    M. Morisawa, K. Harada, S. Kajita, S. Nakaoka, K. Fujiwara, F. Kanehiro, K. Kaneko, H. Hirukawa, Experimentation of humanoid walking allowing immediate modification of foot place based on analytical solution. In Proceedings of the IEEE International Conference on Robotics and Automation, 2007, pp. 3989–3994Google Scholar
  19. 19.
    K. Nagasaka, Y. Kuroki, S. Suzuki, Y. Itoh, J. Yamaguchi, Integrated motion control for walking, jumping and running on a small bipedal entertainment robot. In Proceedings of the IEEE International Conference on Robotics and Automation, 2004, pp. 3189–3194Google Scholar
  20. 20.
    T. Nagasaki, S. Kajita, K. Kaneko, K. Yokoi, K. Tanie, A running experiment of humanoid biped. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004, pp. 136–141Google Scholar
  21. 21.
    K. Nagasaka, Y. Kawanami, S. Shimizu, T. Kito, T. Tsuboi, A. Miyamoto, T. Fukushima, H. Shimomura, Whole-body cooperative force control for a two-armed and two-wheeled mobile robot using generalized inverse dynamics and idealized joint units. In Proceedings of the IEEE International Conference on Robotics and Automation, 2010, pp. 3377–3383Google Scholar
  22. 22.
    Y. Nakamura, H. Hanafusa, T. Yoshikawa, Task priority based redundancy control of robot manipulators. Int. J. Robot. Res. 6(2), 3–15 (1987)CrossRefGoogle Scholar
  23. 23.
    K. Nishiwaki, S. Kagami, Walking control on uneven terrain with short cycle pattern generation. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots, 2007Google Scholar
  24. 24.
    K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, H. Inoue, Online generation of humanoid walking motion based on a fast generation method of motion pattern that follows desired ZMP. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, pp. 2684–2689Google Scholar
  25. 25.
    E. Niwa, Y. Sasaki, Cr-n strain sensitive thin films and their pressure sensor applications. IEEJ Trans. Sens. Micromach. pp. 29–34 (2014) (in Japanese)Google Scholar
  26. 26.
    Numerical Recipes in C, 2nd edn. Cambridge University Press, England, 1992Google Scholar
  27. 27.
    K. Ohnishi, M. Shibata, T. Murakami, Motion control for advanced mechatronics. IEEE/ASME Trans. Mechatronics 1(1), 56–67 (1996)CrossRefGoogle Scholar
  28. 28.
    H. Park, B. Lee, D. Kim, Development of anthropomorphic robot finger for violin fingering. ETRI J. 38(6), 1218–1228 (2016)CrossRefGoogle Scholar
  29. 29.
    M.H. Raibert, Legged Robot that Balance (MIT Press, 1986)Google Scholar
  30. 30.
    K. Shibuya, Toward developing a violin playing robot: bowing by anthropomorphic robot arm and sound analysis. In Proceedings of the IEEE International Conference on Robot and Human Interactive Communication, 2007, pp. 763–768Google Scholar
  31. 31.
    J. Solis, K. Chida, K. Suefuji, A. Takanishi, The development of the anthropomorphic flutist robot at Waseda university. Int. J. Hum. Robot. 3(2), 127–151 (2006)CrossRefGoogle Scholar
  32. 32.
    Y. Sugahara, A. Ohta, K. Hashimoto, H. Sunazuka, M. Kawase, C. Tanaka, H. Lim, A. Takanishi, Walking up and down stairs carrying a human by a biped locomotor with parallel mechanism. In Proceedings of IEEE/RSJ International Conference on Intelligent Robotics and Systems, 2005, pp. 3425–3430Google Scholar
  33. 33.
    R. Tajima K. Suga, Motion having a flight phase: experiments involving a one-legged robot. In Proceedings of the IEEE-RSJ International Conference on Intelligent Robotics and Systems, 2006, pp. 1726–1731Google Scholar
  34. 34.
    R. Tajima, D. Honda, K. Suga, Fast running experiments involving a humanoid robot. In Proceedings of the IEEE International Conference on Robotics and Automation, 2009, pp. 1571–1576Google Scholar
  35. 35.
    S. Takashima, T. Miyawaki, Control of an automatic performance robot of saxophone: Performance control using standard midi files. In Proceedings of the IEEE IROS Workshop on Musical Performance Robots and Its Applications, 2006, pp. 30–35Google Scholar
  36. 36.
    K. Terada, Y. Kuniyoshi, Online gait planning with dynamical 3d-symmetrization method. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots, 2007Google Scholar
  37. 37.
    T. Takenaka, T. Matsumoto, T. Yoshiike, S. Shirokura, Real time motion generation and control for biped robot -2nd report: Running gait pattern generation-, In Proceedings of the IEEE-RSJ International Conference on Intelligent Robotics and Systems, 2009, pp. 1092–1099Google Scholar
  38. 38.
    Toyota Motor Corporation, Legged robot and legged robot walking control method (2008)Google Scholar
  39. 39.
    N.G. Tsagarakis, G. Metta, G. Sandini, D. Vernon, R. Beira, F. Becchi, L. Righetti, J.S. Victor, A.J. Ijspeert, M.C. Carrozza, D.G. Caldwell, icub: the design and realization of an open humanoid platform for cognitive and neuroscience research. Adv. Robot. 21(10), 1151–1175 (2007)CrossRefGoogle Scholar
  40. 40.
    D. Tsetserukou, R. Tadakuma, H. Kajimoto, S. Tachi, Optical torque sensors for local impedance control realization of an anthropomorphic robot arm. Int. J. Robot. Mechatronics 18(2), 121–130 (2006)CrossRefGoogle Scholar
  41. 41.
    D. Vischer, O. Khatib, Design and development of high-performance torque-controlled joints. IEEE Trans. Robot. Autom. 11(4), 537–544 (1995)CrossRefGoogle Scholar
  42. 42.
    M. Vukobratovic, B. Borovac, Zero-moment point – thirty five years of its life. Int. J. Hum. Robot. 1, 157–173 (2004)CrossRefGoogle Scholar
  43. 43.
    Y. Wu, H. Nakamura, Y. Takeda, M. Higuchi, K. Sugimoto, Development of a power assist system of a walking chair based on human arm characteristics. J. Adv. Mech. Design Syst. Manuf. 1(1), 141–154 (2007)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Advanced Technology Engineering DepartmentPartner Robot Division, Toyota Motor CorporationToyotaJapan
  2. 2.Planning & Administration DepartmentPartner Robot Division, Toyota Motor CorporationToyotaJapan

Personalised recommendations