Advertisement

Historical Perspective of Humanoid Robot Research in the Americas

  • Stefan Schaal
Reference work entry

Abstract

One of the key aspects of humanoid robotics is the inspiration from the human body, from human perceptuomotor skills, and from robots operating in human environments with human-made tools. Evolution did develop the human body to be very suitable for its domain of operation, and on top, humans did further tailor their environments to suit their own bodies and abilities. Thus, in order to conduct research on humanoid robots, one possible entry point is to study human behavior and neural information processing. Psychology and neuroscience are research fields with exactly this interest, but often have a strong descriptive element in their research. However, humanoid robotics requires in addition computational theories and causal modeling in order to be able to synthesize behavior with an actual physical system – in the spirit of Richard Feynman’s famous quote “What I cannot create, I do not understand.” As one of the many possibilities of approaching a historical perspective of humanoid robotics research in the USA, it appears illuminating to start with some key events of computational neuroscience which happened at a time, where it was hardly possible to build useful humanoid robots, and how several branches of humanoid robotics research developed out of this initial work.

References

  1. 1.
    D. Marr, Vision – A Computational Investigation into the Human Representation and Processing of Visual Information (W.H. Freeman, San Francisco, 1982)Google Scholar
  2. 2.
    M. Brady, J.M. Hollerbach, T.L. Johnson, M.T. Mason, T. Lozano-Pérez, Robot Motion: Planning and Control (MIT Press, Cambridge, 1982)Google Scholar
  3. 3.
    T. Flash, N. Hogan, The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985)CrossRefGoogle Scholar
  4. 4.
    N. Hogan, An organizing principle for a class of voluntary movements. J. Neurosci. 4(11), 2745–2754 (1984)CrossRefGoogle Scholar
  5. 5.
    C.H. An, C.G. Atkeson, J.M. Hollerbach, Model-Based Control of a Robot Manipulator (MIT Press, Cambridge, MA, 1987)Google Scholar
  6. 6.
    E.W. Aboaf, C.G. Atkeson, D. Reinkensmeyer, Task-level robot learning. Presented at the Proceedings of the IEEE international conference on robotics and automation, Philadelphia, 24–29 April (IEEE, Piscataway, 1988), pp. 331–348Google Scholar
  7. 7.
    I.M. Jordan, Rumelhart, Supervised learning with a distal teacher. Cogn. Sci. 16, 307–354 (1992)CrossRefGoogle Scholar
  8. 8.
    S. Schaal, C.G. Atkeson, Memory-based robot learning. Presented at the IEEE international conference on robotics and automation, San Diego, vol. 3, 1994a, pp. 2928–2933Google Scholar
  9. 9.
    F.A. Mussa Ivaldi, S.F. Giszter, Vector field approximation: A computational paradigm for motor control and learning. Biol. Cybern. 67(6), 491–501 (1992)CrossRefGoogle Scholar
  10. 10.
    M. Raibert, Legged Robots That Balance (MIT Press, Cambridge, MA, 1986)zbMATHGoogle Scholar
  11. 11.
    J.J.E. Slotine, W. Li, Applied Nonlinear Control (Prentice Hall, Englewood Cliffs, 1991)zbMATHGoogle Scholar
  12. 12.
    S. Schaal, C.G. Atkeson, Robot juggling: implementation of memory-based learning. IEEE Control Syst. Mag. 14(1), 57–71 (1994b)CrossRefGoogle Scholar
  13. 13.
    M. Bühler, D.E. Koditschek, Analysis of a simplifed hopping robot. Presented at the IEEE conference on robotics and automation, 1988, pp. 845–865Google Scholar
  14. 14.
    M. Bühler, D.E. Koditschek, From stable to chaotic juggling: theory, simulation, and experiments. Presented at the IEEE international conference on robotics and automation, Cincinnati, 1990, pp. 845–865Google Scholar
  15. 15.
    A.A. Rizzi, D.E. Koditschek, Progress in spatial robot juggling. Presented at the proceedings of IEEE international conference on robotics and automation, Nice, 1992, pp. 59–71Google Scholar
  16. 16.
    C.G. Atkeson, J. Hale, M. Kawato, S. Kotosaka, F. Pollick, M. Riley, et al., Using Humanoid Robots to Study Human Behaviour. IEEE Intell. Syst. 15(4), 46–56 (2000)CrossRefGoogle Scholar
  17. 17.
    C.G. Atkeson, S. Schaal, Learning tasks from a single demonstration. Presented at the IEEE international conference on robotics and automation (ICRA97), Albuquerque, 20–25 April, vol. 2 (IEEE, Piscataway, 1997), pp. 1706–1712Google Scholar
  18. 18.
    S. Schaal, Learning from demonstration, in Presented at the Advances in Neural Information Processing Systems 9, ed. by M.C. Mozer, M. Jordan, T. Petsche (MIT Press, Cambridge, MA, 1997), pp. 1040–1046Google Scholar
  19. 19.
    S. Schaal, C.G. Atkeson, S. Vijayakumar, Real-time robot learning with locally weighted statistical learning. Presented at the international conference on robotics and automation (ICRA2000), San Francisco, Apr 2000, 2000Google Scholar
  20. 20.
    J. Nakanishi, R. Cory, M. Mistry, J. Peters, S. Schaal, Comparative experiments on task space control with redundancy resolution. Presented at the IEEE international conference on intelligent robots and systems (IROS 2005), Edmonton, 2–6 Aug 2005, pp. 3901–3908Google Scholar
  21. 21.
    J. Nakanishi, T. Fukuda, D.E. Koditschek, A brachiating robot controller. IEEE Trans. Robot. Autom. 16(2), 109–123 (2000)CrossRefGoogle Scholar
  22. 22.
    A.J. Ijspeert, J. Nakanishi, S. Schaal, Learning attractor landscapes for learning motor primitives. Adv. Neural Inf. Proces. Syst. 15, 1547–1554 (2003)Google Scholar
  23. 23.
    A. Billard, S. Schaal, Robust learning of arm trajectories through human demonstration. Presented at the IEEE international conference on intelligent robots and systems (IROS 2001), Maui, 29 Oct–3 Nov (IEEE, Piscataway, 2001)Google Scholar
  24. 24.
    A. Billard, S. Schaal. Computational elements of robot learning by imitation. Presented at the American Mathematical Society central section meeting, Madison, 12–13 Oct 2002 (American Mathematical Society, Providence, 2002)Google Scholar
  25. 25.
    A. Ude, T. Shibata, C.G. Atkeson, Real-time visual system for interaction with a humanoid robot. Robot. Auton. Syst. 37(225), 115 (2001)CrossRefGoogle Scholar
  26. 26.
    S. Vijayakumar, A. D’Souza, S. Schaal, Incremental online learning in high dimensions. Neural Comput. 17(12), 2602–2634 (2005)MathSciNetCrossRefGoogle Scholar
  27. 27.
    S. Vijayakumar, A. D’Souza, T. Shibata, J. Conradt, S. Schaal, Statistical learning for humanoid robots. Auton. Robot. 12(1), 59–72 (2002)CrossRefGoogle Scholar
  28. 28.
    T. Shibata, H. Tabata, S. Schaal, M. Kawato, A model of smooth pursuit in primates based on learning the target dynamics. Neural Netw. 18(3), 213–224 (2005)CrossRefGoogle Scholar
  29. 29.
    S. Kotosaka, S. Schaal, Synchronized robot drumming by neural oscillator. J. Robot. Soc. Jpn 19(1), 116–123 (2001)CrossRefGoogle Scholar
  30. 30.
    G. Cheng, S.-H. Hyon, J. Morimoto, A. Ude, G. Colvin, W. Scroggin, S.C. Jacobsen, CB: a humanoid research platform for exploring neuroscience. Presented at the humanoid robots, 2006 6th IEEE-RAS international conference on, 2006, pp. 182–187Google Scholar
  31. 31.
    A. Herzog, L. Righetti, F. Grimminger, P. Pastor, S. Schaal, Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics. Presented at the proceedings of the IEEE international conference on intelligent robotics systems, Chicago, 2014, pp. 1–8. http://www-clmc.usc.edu/publications/H/herzog-IROS2014.pdf
  32. 32.
    B.J. Stephens, C.G. Atkeson, Dynamic Balance Force Control for compliant humanoid robots. Presented at the intelligent robots and systems (IROS), 2010 IEEE/RSJ international conference on, 2010, pp. 1248–1255.  https://doi.org/10.1109/IROS.2010.5648837
  33. 33.
    R.A. Brooks, C. Breazeal, M. Marjanovic, B. Scassellati, M. Williamson, The cog project: building a humanoid robot, in Lecture Notes in Computer Science, (Springer, Berlin, 1999)Google Scholar
  34. 34.
    B. Scassellati, Theory of mind for a humanoid robot. Auton. Robot. 12, 13–24 (2002)CrossRefGoogle Scholar
  35. 35.
    C. Breazeal, B. Scassellati, Robots that imitate humans. Trends Cogn. Sci. 6(11), 481–487 (2002)CrossRefGoogle Scholar
  36. 36.
    F. Gubina, H. Hemami, R.B. McGhee, On the Dynamic Stability of Biped Locomotion. IEEE Trans. Biomed. Eng. BME-21(2), 102–108 (1974).  https://doi.org/10.1109/TBME.1974.324294CrossRefGoogle Scholar
  37. 37.
    O. Khatib, A united approach to motion and force control of robot manipulators: The operational space formulation. Int. J. Robot. Res. 31, 43–53 (1987)Google Scholar
  38. 38.
    O. Khatib, O. Brock, K. Chang, F. Conti, D. Ruspini, L. Sentis, Robotics & interactive simulation. Commun. ACM 45, 46–51 (2002)CrossRefGoogle Scholar
  39. 39.
    O. Khatib, L. Sentis, J. Park, J. Warrent, Whole-body dynamic behavior and control of human-like robots. Int. J. Human. Robot. 1(1), 1–15 (2004)CrossRefGoogle Scholar
  40. 40.
    L. Sentis, O. Khatib, Task-oriented control of humanoid robots through prioriization. Presented at the IEEE-RAS/RSJ international conference on humanoid robots, Santa Monica, 10–12 Nov 2004Google Scholar
  41. 41.
    A. Goswami, Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Robot. Res. 18(6), 523–533 (1999)CrossRefGoogle Scholar
  42. 42.
    J. Pratt, J. Carff, S. Drakunov, A. Goswami, Capture point: a step toward humanoid push recovery. Presented at the humanoid robots, 2006 6th IEEE-RAS international conference on, 2006, pp. 200–207Google Scholar
  43. 43.
    S.H. Collins, M.B. Wiggin, G.S. Sawicki, Reducing the energy cost of human walking using an unpowered exoskeleton. Nature, 1–15 (2015).  https://doi.org/10.1038/nature14288CrossRefGoogle Scholar
  44. 44.
    J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, M. Kawato, A framework for learning biped locomotion with dynamic movement primitives. Presented at the IEEE-RAS/RSJ international conference on humanoid robots (humanoids 2004), Los Angeles, 10–12 Nov (IEEE, Santa Monica, 2004)Google Scholar
  45. 45.
    J.E. Pratt, G.A. Pratt, Intuitive control of a planar bipedal walking robot. ICRA (1998)Google Scholar
  46. 46.
    R. Tedrake, T.W. Zhang, S. Seung, Stochastic policy gradient reinforcement learning on a simple 3D biped. Presented at the proceedings of the international conference on intelligent robots and systems, Sendai, Oct 2004, pp. 2849–2854Google Scholar
  47. 47.
    D.W. Robinson, J.E. Pratt, D.J. Paluska, G.A. Pratt, Series elastic actuator development for a biomimetic walking robot. Presented at the 1999 IEEE/ASME international conference on advanced intelligent mechatronics, IEEE, 1999, pp. 561–568.  https://doi.org/10.1109/AIM.1999.803231
  48. 48.
    J.E. Pratt, C.-M. Chew, A. Torres, P. Dilworth, G.A. Pratt, Virtual model control – an intuitive approach for bipedal locomotion. I. J. Robot. Res. 20, 129–143 (2001)CrossRefGoogle Scholar
  49. 49.
    T. McGeer, Passive dynamic walking. Int. J. Robot. Res. 9(2), 633–643 (1990)CrossRefGoogle Scholar
  50. 50.
    S. Collins, A. Ruina, R. Tedrake, M. Wisse, Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712), 1082–1085 (2005)CrossRefGoogle Scholar
  51. 51.
    M. Srinivasan, A. Ruina, Computer optimization of a minimal biped model discovers walking and running. Nature 439(7072), 72–75 (2005).  https://doi.org/10.1038/nature04113CrossRefGoogle Scholar
  52. 52.
    E.R. Westervelt, G. Buche, J.W. Grizzle, Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds. Int. J. Robot. Res. 23(6), 559 (2004)CrossRefGoogle Scholar
  53. 53.
    J. Bohren, R.B. Rusu, E.G. Jones, E. Marder-Eppstein, C. Pantofaru, M. Wise, et al., Towards autonomous robotic butlers – lessons learned with the PR2. ICRA (2011)Google Scholar
  54. 54.
    R. Platt Jr., A.H. Fagg, R.A. Grupen, Manipulation gaits – sequences of grasp control tasks. ICRA (2004)Google Scholar
  55. 55.
    V. Sukhoy, A. Stoytchev, Learning to detect the functional components of doorbell buttons using active exploration and multimodal correlation. Presented at the humanoid robots (humanoids), 2010 10th IEEE-RAS international conference on, 2010, pp. 572–579.  https://doi.org/10.1109/ICHR.2010.5686327
  56. 56.
    G. Metta, P. Fitzpatrick, Better vision through manipulation. Adapt. Behav. 11(2), 109–128 (2003).  https://doi.org/10.1177/10597123030112004CrossRefGoogle Scholar
  57. 57.
    A. Edsinger-Gonzales, J. Weber, Domo – a force sensing humanoid robot for manipulation research. Humanoids (2004)Google Scholar
  58. 58.
    W. Bluethmann, R. Ambrose, M. Diftler, S. Askew, E. Huber, M. Goza, et al., Robonaut: a robot designed to work with humans in space. Auton. Robot. 14(2–3), 179–197 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Stefan Schaal
    • 1
    • 2
  1. 1.Max-Planck-Institute for Intelligent SystemsTübingenGermany
  2. 2.Computer ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations