Advertisement

Importance of Humanoid Robot Detection

  • Taher Abbas Shangari
  • Soroush Sadeghnejad
  • Jacky Baltes
Reference work entry

Abstract

Robot Interaction, has always been a challenge in collaborative robotics. In tasks comprising Inter-Robot Interaction, robot detection is very often needed. We explore humanoid robots detection because, humanoid robots can be useful in many scenarios, and everything from helping elderly people live in their own homes to responding to disasters. Cameras are chosen because they are reach and cheap sensors, and there are lots of mature 2D and 3D computer vision libraries which facilitate Image analysis. The well-known cascade classifier in combination with several image descriptors like HOG, LBP, etc. are utilized to detect objects.

Recommended Readings

  1. 1.
    U. Kaufmann, G. Mayer, G. Kraetzschmar, G. Palm, Visual robot detection in robocup using neural networks, in Robot Soccer World Cup, (Kluwer Academic 2004), pp. 262–273Google Scholar
  2. 2.
    Y.U. Cao, A.S. Fukunaga, A. Kahng, Cooperative mobile robotics: antecedents and directions. Auton. Robot. 4, 7–27 (1997). Kluwer Academic Publishers. Manufactured in The NetherlandsCrossRefGoogle Scholar
  3. 3.
    S. Coradeschi, H. Ishiguro, M. Asada, S.C. Shapiro, M. Thielscher, C. Breazeal, et al., Human-inspired robots. IEEE Intell. Syst. 21, 74–85 (2006)CrossRefGoogle Scholar
  4. 4.
    L. Chaimowicz, T. Sugar, V. Kumar, M.F. Campos, An architecture for tightly coupled multi-robot cooperation, in Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, (2001), pp. 2992–2997Google Scholar
  5. 5.
    A. Discant, A. Rogozan, C. Rusu, A. Bensrhair, Sensors for obstacle detection-a survey, in Electronics Technology, 30th International Spring Seminar on, (2007), pp. 100–105Google Scholar
  6. 6.
    R. Gerndt, D. Seifert, J.H. Baltes, S. Sadeghnejad, S. Behnke, Humanoid robots in soccer: robots versus humans in RoboCup 2050. IEEE Robot. Autom. Mag. 22, 147–154 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Baltes, K.-Y. Tu, S. Sadeghnejad, J. Anderson, HuroCup: competition for multi-event humanoid robot athletes. Knowl. Eng. Rev., 1–14 (2016)Google Scholar
  8. 8.
    T.B. Moeslund, E. Granum, A survey of computer vision-based human motion capture. Comput. Vis. Image Underst. 81, 231–268 (2001)CrossRefGoogle Scholar
  9. 9.
    P. Stone, Layered Learning in Multiagent Systems: A Winning Approach to Robotic Soccer (MIT Press, Cambridge, MA, 1998)Google Scholar
  10. 10.
    J. Ruiz del Solar, R. Verschae, M. Arenas, P. Loncomilla, Play ball! Robot detection system in the soccer domain. IEEE Robot. Autom. Mag. 17, 43–53 (2010)CrossRefGoogle Scholar
  11. 11.
    R. Zaier, The Future of Humanoid Robots – Research and Applications (InTechCorp, Rijeka, 2012)CrossRefGoogle Scholar
  12. 12.
    N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 2005, pp. 886–893Google Scholar
  13. 13.
    P. Viola, M.J. Jones, Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004)CrossRefGoogle Scholar
  14. 14.
    H. Schneiderman, T. Kanade, A statistical method for 3D object detection applied to faces and cars, in Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on, 2000, pp. 746–751Google Scholar
  15. 15.
    A. Coates, A.Y. Ng, Multi-camera object detection for robotics, in Robotics and Automation (ICRA), 2010 IEEE International Conference on, 2010, pp. 412–419Google Scholar
  16. 16.
    E. Guizzo, E. Ackerman, How rethink robotics built its new Baxter robot worker (2012), http://spectrum.ieee.org/robotics/industrial-robots/rethink-robotics-baxter-robot-factory-worker
  17. 17.
    J. Hsu, NASA plans new robot generation to explore moon, asteroids (2010). https://www.space.com/8157-nasa-plans-robot-generation-explore-moon-asteroids.html
  18. 18.
    R. Uddin, S. Park, S. Baek, J. Ryu, Model predictive energy-bounding approach for the perception of multiple degree-of-freedom objects in bilateral teleoperation with online geometry and parameter of remote environment: a feasibility test, in Control, Automation and Systems (ICCAS), 2013 13th International Conference on, 2013, pp. 1039–1041Google Scholar
  19. 19.
    A.A. Alves Jr., L. Andrade Filho, A. Barbosa, I. Bediaga, G. Cernicchiaro, G. Guerrer, et al., The LHCb detector at the LHC. J. Instrum. 3, S08005 (2008)Google Scholar
  20. 20.
    R. Gerndt, D. Seifert, J.H. Baltes, S. Sadeghnejad, S. Behnke, Humanoid robots in soccer: robots versus humans in RoboCup 2050. IEEE Robot. Autom. Mag. 22, 147–154 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Ma, X. Chen, G. Chen, Pedestrian detection and tracking using HOG and oriented-LBP features, in Network and Parallel Computing. NPC 2011, ed. by E. Altman, W. Shi. Lecture Notes in Computer Science, 6985 (Springer, Berlin/Heidelberg, 2011), pp. 176–184Google Scholar
  22. 22.
    S. Walk, N. Majer, K. Schindler, B. Schiele, New features and insights for pedestrian detection, in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, 2010, pp. 1030–1037Google Scholar
  23. 23.
    G. Gan, J. Cheng, Pedestrian detection based on HOG-LBP feature, in Computational Intelligence and Security (CIS), 2011 Seventh International Conference on, 2011, pp. 1184–1187Google Scholar
  24. 24.
    P. Dollar, C. Wojek, B. Schiele, P. Perona, Pedestrian detection: An evaluation of the state of the art. IEEE Trans. Patt. Anal. Mach. Intell. 34, 743–761 (2012)CrossRefGoogle Scholar
  25. 25.
    P. Sabzmeydani, G. Mori, Detecting pedestrians by learning shapelet features, in Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, 2007, pp. 1–8Google Scholar
  26. 26.
    Z. Lin, L.S. Davis, A pose-invariant descriptor for human detection and segmentation, in Computer Vision–ECCV 2008, ed. by D. Forsyth, P. Torr, A. Zisserman. Lecture Notes in Computer Science, 5305 (Springer, Berlin/Heidelberg, 2008), pp. 423–436Google Scholar
  27. 27.
    P. Felzenszwalb, D. McAllester, D. Ramanan, A discriminatively trained, multiscale, deformable part model, in Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, 2008, pp. 1–8Google Scholar
  28. 28.
    P. Dollár, Z. Tu, H. Tao, S. Belongie, Feature mining for image classification, in Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, 2007, pp. 1–8Google Scholar
  29. 29.
    S. Maji, A.C. Berg, J. Malik, Classification using intersection kernel support vector machines is efficient, in Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, 2008, pp. 1–8Google Scholar
  30. 30.
    C. Wojek, B. Schiele, A performance evaluation of single and multi-feature people detection, in Pattern Recognition, DAGM 2008, ed. by G. Rigoll. Lecture Notes in Computer Science, 5096 (Springer, Berlin/Heidelberg, 2008), pp. 82–91Google Scholar
  31. 31.
    X. Wang, T.X. Han, S. Yan, An HOG-LBP human detector with partial occlusion handling, in Computer Vision, 2009 IEEE 12th International Conference on, 2009, pp. 32–39Google Scholar
  32. 32.
    P.F. Felzenszwalb, R.B. Girshick, D. McAllester, D. Ramanan, Object detection with discriminatively trained part-based models. IEEE Trans. Patt. Anal. Mach. Intell. 32, 1627–1645 (2010)CrossRefGoogle Scholar
  33. 33.
    W.R. Schwartz, A. Kembhavi, D. Harwood, L.S. Davis, Human detection using partial least squares analysis, in Computer Vision, 2009 IEEE 12th International Conference on, 2009, pp.~24–31Google Scholar
  34. 34.
    A. Bar-Hillel, D. Levi, E. Krupka, C. Goldberg, Part-based feature synthesis for human detection, in Computer Vision–ECCV 2010, ed. by K. Daniilidis, P. Maragos, N. Paragios. Lecture Notes in Computer Science, 6314 (Springer, Berlin/Heidelberg, 2010), pp. 127–142CrossRefGoogle Scholar
  35. 35.
    P. Dollár, S. Belongie, P. Perona, The fastest pedestrian detector in the west, in BMVC, 2010, p. 7Google Scholar
  36. 36.
    P. Dollár, Z. Tu, P. Perona, and S. Belongie, Integral channel features, 2009Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Taher Abbas Shangari
    • 1
  • Soroush Sadeghnejad
    • 2
  • Jacky Baltes
    • 3
  1. 1.Bio-Inspired System Design LabAmirkabir University of Technology (Tehran Polytechnic)TehranIran
  2. 2.Mechanical Engineering DepartmentAmirkabir University of Technology (Tehran Polytechnic)TehranIran
  3. 3.National Taiwan Normal University 3 Educational Robotics Center, Department of Electrical EngineeringNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations