Advertisement

Assistive Humanoid Robots for the Elderly with Mild Cognitive Impairment

  • François Ferland
  • Roxana Agrigoroaie
  • Adriana Tapus
Reference work entry

Abstract

There is a growing need worldwide in new technologies to assist elderly individuals in their daily lives, especially those that suffer from mild cognitive impairment (MCI). Autonomous robots have been suggested and already tested for this task in multiple contexts, such as hospitals and retirement homes. Humanoid robots, with their advanced sensing and motor capabilities, are well suited for this task, especially considering that they are usually designed to perform in human-scale environments. This chapter presents various humanoid research works and projects that have been conducted with humanoid robots and elderly individuals, along with assistive technologies that could be used with humanoid robots and the challenges that remain ahead.

References

  1. 1.
    United Nations, Department of Economic and Social Affairs, Population Division, World Population Ageing (2015). https://doi.org/10.1186/1471-2318-14-112Google Scholar
  2. 2.
    C. Siegel, A. Hochgatterer, T.E. Dorner, Contributions of ambient assisted living for health and quality of life in the elderly and care services – a qualitative analysis from the experts’ perspective of care service professionals. BMC Geriatr. 14, 112 (2014)CrossRefGoogle Scholar
  3. 3.
    A. Collie, P. Maruff, The neuropsychology of preclinical Alzheimer’s disease and mild cognitive impairment. Neurosci. Biobehav. Rev. 24, 365–374 (2000)CrossRefGoogle Scholar
  4. 4.
    K. Ritchie, J. Touchon, Mild cognitive impairment: conceptual basis and current nosological status. Lancet 355, 225 (2000)CrossRefGoogle Scholar
  5. 5.
    R.C. Petersen, G.E. Smith, S.C. Waring, R.J. Ivnik, E.G. Tangalos, E. Kokmen, Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56, 303–308 (1999)CrossRefGoogle Scholar
  6. 6.
    T. Mukai, S. Hirano, H. Nakashima, Y. Kato, Y. Sakaida, S. Guo, S. Hosoe, Development of a nursing-care assistant robot RIBA that can lift a human in its arms, in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, Taipei, 2010), pp. 5996–6001Google Scholar
  7. 7.
    J. Ding, Y.J. Lim, M. Solano, K. Shadle, C. Park, C. Lin, J. Hu, Giving patients a lift – the robotic nursing assistant (RoNA), in 2014 IEEE International Conference on Technologies for Practical Robot Applications (TePRA) (IEEE, Woburn, 2014), pp. 1–5Google Scholar
  8. 8.
    M.M. Williamson, Series Elastic Actuators (Cambridge/Boston, Massachusetts Institute of Technology, 1995)Google Scholar
  9. 9.
    R. Ranasinghe, L. Dantanarayana, A. Tran, S. Lie, M. Behrens, L. Liu, Smart hoist: an assistive robot to aid carers, in 2014 13th International Conference on Control Automation Robotics Vision (ICARCV) (IEEE, Singapore, 2014), pp. 1285–1291Google Scholar
  10. 10.
    Toyota. Toyota Global Site | Care Assist Robot Technical Presentation [Online]. Toyota Mot. Corp. Glob. (2011). Website: http://www.toyota-global.com/innovation/partner_robot/technical_presentation/index.html [8 Dec. 2016]
  11. 11.
    S. Egawa, I. Takeuchi, A. Koseki, T. Ishii, Electrically assisted walker with supporter-embedded force-sensing device, in Advances in Rehabilitation Robotics (Springer, Berlin/Heidelberg, 2004), pp. 313–322Google Scholar
  12. 12.
    D. Fontanelli, A. Giannitrapani, L. Palopoli, D. Prattichizzo, A passive guidance system for a robotic walking assistant using brakes, in 2015 54th IEEE Conference on Decision and Control (CDC) (2015), pp. 829–834Google Scholar
  13. 13.
    A. Morris, R. Donamukkala, A. Kapuria, A. Steinfeld, J.T. Matthews, J. Dunbar-Jacob, S. Thrun, A robotic walker that provides guidance, in Proceedings of the IEEE International Conference on Robotics and Automation, (IEEE, Taipei, 2003), pp. 25–30Google Scholar
  14. 14.
    W.H. Mou, M.F. Chang, C.K. Liao, Y.H. Hsu, S.H. Tseng, L.C. Fu, Context-aware assisted interactive robotic walker for Parkinson’s disease patients, in Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IEEE, Vilamoura, 2012), pp. 329–334Google Scholar
  15. 15.
    A.M. Sabatini, V. Genovese, E. Pacchierotti, A mobility aid for the support to walking and object transportation of people with motor impairments, in Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IEEE, Lausanne, 2002), pp. 1349–1354Google Scholar
  16. 16.
    H.M. Shim, E.H. Lee, J.H. Shim, S.M. Lee, S.H. Hong, Implementation of an intelligent walking assistant robot for the elderly in outdoor environment, in Proceedings International Conference on Rehabilitation Robotics (IEEE, Chicago, 2005), pp. 452–455Google Scholar
  17. 17.
    K.T. Yu, C.P. Lam, M.F. Chang, W.H. Mou, S.H. Tseng, L.C. Fu, An interactive robotic walker for assisting elderly mobility in senior care unit, in IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO) (IEEE, Seoul, 2010)Google Scholar
  18. 18.
    J. Frémy, F. Ferland, M. Lauria, F. Michaud, Force-guidance of a compliant omnidirectional non-holonomic platform. Robot. Auton. Syst. 62, 579–590 (2014)CrossRefGoogle Scholar
  19. 19.
    F. Ferland, A. Aumont, D. Létourneau, M. A. Legault, F. Michaud, Johnny-0, a compliant, force-controlled and interactive humanoid autonomous robot, in Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction, Boston, 2012, pp. 417–418Google Scholar
  20. 20.
    Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima, H. Lim, A. Takanishi, Development of a new humanoid robot WABIAN-2, in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006 (IEEE, Orlando, 2006), pp. 76–81Google Scholar
  21. 21.
    P. Rashidi, A. Mihailidis, A survey on ambient-assisted living tools for older adults. IEEE J. Biomed. Health Inform. 17, 579–590 (2013)CrossRefGoogle Scholar
  22. 22.
    B. Graf, C. Parlitz, M. Hägele, Robotic home assistant Care-O-bot® 3 product vision and innovation platform, in Proceedings of the IEEE Workshop on Advanced Robotics and Its Social Impacts (IEEE, Tokyo, 2009), pp. 139–144. https://doi.org/10.1109/ARSO.2009.5587059Google Scholar
  23. 23.
    T. Taipalus, K. Kosuge, Development of service robot for fetching objects in home environment, in 2005 International Symposium on Computational Intelligence in Robotics and Automation (IEEE, Espoo, 2005), pp. 451–456Google Scholar
  24. 24.
    A. Reveleau, F. Ferland, M. Labbé, D. Létourneau, F. Michaud, Visual representation of interaction force and sound source in a teleoperation user interface for a mobile robot. J. Hum. Robot. Interact. 4, 1–23 (2015)CrossRefGoogle Scholar
  25. 25.
    A. Tapus, C. Tapus, M.J. Mataric, The use of socially assistive robots in the design of intelligent cognitive therapies for people with dementia, in 2009 IEEE International Conference on Rehabilitation Robotics (IEEE, Kyoto, 2009), pp. 924–929Google Scholar
  26. 26.
    F. Martín, C. Agüero, J.M. Cañas, G. Abella, R. Benítez, S. Rivero, M. Valenti, P. Martínez-Martín, Robots in therapy for dementia patients. J. Phys. Agents 7, 48–55 (2013)Google Scholar
  27. 27.
    D. Fischinger, P. Einramhof, W. Wohlkinger, K. Papoutsakis, P. Mayer, P. Panek, T. Koertner, S. Hoffmann, A. Argyros, M. Vincze, C. Gisinger, A. Weiss, Hobbit – the mutual care robot, in Workshop Proceedings of ASROB in Conjunction with IROS 2013, Tokyo, 2013Google Scholar
  28. 28.
    O. Faust, U. Rajendra Acharya, E.Y.K. Ng, T.J. Hong, W. Yu, Application of infrared thermography in computer aided diagnosis. Infrared Phys. Technol. 66, 160–175 (2014)CrossRefGoogle Scholar
  29. 29.
    J.T. Cacioppo, L.G. Tassinary, Inferring psychological significance from physiological signals. Am. Psychol. 45, 16 (1990)CrossRefGoogle Scholar
  30. 30.
    D. Keltner, P. Ekman, Facial expression of emotion, in Handbook of Emotions, ed. by M. Lewis, J. K. Haviland-Jones (Guilford Publications, New York, 2000), pp. 236–249Google Scholar
  31. 31.
    K.H. Kim, S. Bang, S. Kim, Emotion recognition system using short-term monitoring of physiological signals. Med. Biol. Eng. Comput. 42, 419–427 (2004)CrossRefGoogle Scholar
  32. 32.
    P. Philippot, R.S. Feldman, others, The Regulation of Emotion (Erlbaum, Mahwah, 2004)Google Scholar
  33. 33.
    S. Ioannou, P. Morris, H. Mercer, M. Baker, V. Gallese, V. Reddy, Proximity and gaze influences facial temperature: a thermal infrared imaging study. Front. Psychol. 5, 845 (2014)CrossRefGoogle Scholar
  34. 34.
    S. Ioannou, V. Gallese, A. Merla, Thermal infrared imaging in psychophysiology: potentialities and limits. Psychophysiology 51, 951–963 (2014)CrossRefGoogle Scholar
  35. 35.
    P.M. Suter, R. Maire, D. Holtz, W. Vetter, Relationship between self-perceived stress and blood pressure. J. Hum. Hypertens. 11, 171–176 (1997)CrossRefGoogle Scholar
  36. 36.
    M. Sorostinean, F. Ferland, A. Tapus, Reliable stress measurement using face temperature variation with a thermal camera in human-robot interaction [Online], in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (IEEE, 2016), pp. 14–19. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7363516 [9 Dec.2016].
  37. 37.
    V. Magnanimo, M. Saveriano, S. Rossi, D. Lee, A Bayesian approach for task recognition and future human activity prediction, in The 23rd IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (IEEE, Edimburgh, 2014), pp. 726–731Google Scholar
  38. 38.
    S. Iengo, S. Rossi, M. Staffa, A. Finzi. Continuous gesture recognition for flexible human-robot interaction, in IEEE International Conference on Robotics and Automation, ICRA Hong Kong, 31 May–7 June 2014 (IEEE, Hong Kong, 2014), pp. 4863–4868Google Scholar
  39. 39.
    H.S. Koppula, R. Gupta, A. Saxena, Learning human activities and object affordances from RGB-D videos. Int. J. Robot. Res. 32, 951–970 (2013)CrossRefGoogle Scholar
  40. 40.
    T. Kleinberger, M. Becker, E. Ras, A. Holzinger, P. Müller, Ambient intelligence in assisted living: enable elderly people to handle future interfaces, in Universal Access in Human-Computer Interaction. Ambient Interaction. International Conference on Universal Access in Human-Computer Interaction (Springer, Berlin/Heidelberg), pp. 103–112Google Scholar
  41. 41.
    P. Mayer, P. Panek, A social assistive robot in an intelligent environment. Biomed. Tech. (Berl) (2013). https://doi.org/10.1515/bmt-2013-4240Google Scholar
  42. 42.
    S. Coradeschi et al., GiraffPlus: A system for monitoring activities and physiological parameters and promoting social interaction for elderly. Hum. Comput. Syst. Interact. Backgr. Appl. 3 Adv. Intell. Syst. Comput. 300, 261–271 (2014)Google Scholar
  43. 43.
    M. Tanaka, A. Ishii, et al., Effect of a human-type communication robot on cognitive function in elderly women living alone. Med. Sci. Monit. 18, CR550 (2012)Google Scholar
  44. 44.
    F. Ferland, F. Leconte, A. Tapus, F. Michaud, An architecture with integrated episodic memory for adaptive robot behavior, in 2014 AAAI Fall Symposium Series (AAAI, Arlington, 2014)Google Scholar
  45. 45.
    M. Georgeff, B. Pell, M. Pollack, M. Tambe, M. Wooldridge, The belief-desire-intention model of agency, in International Workshop on Agent Theories, Architectures, and Languages. Lecture Notes in Computer Science, vol. 1555 (Springer, Berlin/Heidelberg, 1998), pp. 1–10Google Scholar
  46. 46.
    F. Leconte, F. Ferland, F. Michaud, Design and integration of a spatio-temporal memory with emotional influences to categorize and recall the experiences of an autonomous mobile robot. Auton. Robot. 40, 831–848 (2016)CrossRefGoogle Scholar
  47. 47.
    F. Ferland, F. Michaud, Selective attention by perceptual filtering in a robot control architecture. IEEE Trans. Cogn. Dev. Syst. 8(4), 256–270CrossRefGoogle Scholar
  48. 48.
    F. Ferland, A. Cruz-Maya, A. Tapus, Adapting an hybrid behavior-based architecture with episodic memory to different humanoid robots, in 2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (IEEE, Kobe, 2015), pp. 797–802Google Scholar
  49. 49.
    M. Heerink, B. Kröse, V. Evers, B. Wielinga, Assessing acceptance of assistive social agent technology by older adults: the almere model. Int. J. Soc. Robot. 2, 361–375 (2010)CrossRefGoogle Scholar
  50. 50.
    M. Heerink, How elderly users of a socially interactive robot experience adaptiveness, adaptability and user control, in IEEE 12th International Symposium on Computational Intelligence and Informatics (CINTI), 2011 IEEE 12th International Symposium on. IEEE (IEEE, Budapest, 2011), pp. 79–84Google Scholar
  51. 51.
    E. T. Hall, The Hidden Dimension (Doubleday, New York, 1966)Google Scholar
  52. 52.
    N. Dael, N. Bianchi-Berthouze, A. Kleinsmith, C. Mohr, Measuring body movement: current and future directions in proxemics and kinesics, in APA Handbook of Nonverbal Communication, ed. by D. Matsumoto, H. C. Hwang, M. G. Frank (American Psychological Association, Washington, DC, 2016), pp. 551–587Google Scholar
  53. 53.
    D. Matsumoto, H. C. Hwang, M. G. Frank, The body: postures, gait, proxemics, and haptics, in APA Handbook of Nonverbal Communication, ed. by D. Matsumoto, H. C. Hwang, M. G. Frank (American Psychological Association, Washington, DC, 2016), pp. 387–400Google Scholar
  54. 54.
    R. Mead, M. J. Matarić, Perceptual models of human-robot proxemics, in Experimental Robotics: The 14th International Symposium on Experimental Robotics, ed. by M. A. Hsieh, O. Khatib, V. Kumar (Springer International Publishing, Cham, 2016), pp. 261–276Google Scholar
  55. 55.
    R. Agrigoroaie, F. Ferland, A. Tapus, The ENRICHME project: lessons learnt from a first interaction with the elderly, in International Conference on Social Robotics. Lecture Notes in Computer Science, vol. 9979 (Springer, Cham, 2016), pp. 735–745CrossRefGoogle Scholar
  56. 56.
    C. Dondrup, N. Bellotto, Jovan F., M. Hanheide, Real-time multisensor people tracking for human-robot spatial interaction, in Workshop on Machine Learning for Social Robotics at International Conference on Robotics and Automation – ICRA, 2015Google Scholar
  57. 57.
    A. Cruz-Maya, A. Tapus, Teaching nutrition and healthy eating by using multimedia with a Kompai Robot: effects of stress and user’s personality, in Proceedings of the IEEE-RAS International Conference on Humanoid Robots (IEEE, Cancun, 2016)Google Scholar
  58. 58.
    P. Ekman, W.V. Friesen, Facial Action Coding System (Consulting Psychologists Press, Palo Alto, 1978)Google Scholar
  59. 59.
    L.R. Goldberg, An alternative“ description of personality”: the big-five factor structure. J. Pers. Soc. Psychol. 59, 1216 (1990)CrossRefGoogle Scholar
  60. 60.
    P. Ekman, W.V. Friesen, J.C. Hager, Facial Action Coding System, Investigator’s Guide, 2nd edn. (Weidenfeld & Nicolson, London, 2002)Google Scholar
  61. 61.
    D. Leidner, A. Dietrich, M. Beetz, A. Albu-Schäffer, Knowledge-enabled parameterization of whole-body control strategies for compliant service robots. Auton. Robot. 40, 519–536 (2016)CrossRefGoogle Scholar
  62. 62.
    L. Sentis, O. Khatib, Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int. J. Humanoid Robot. 2, 505–518 (2005)CrossRefGoogle Scholar
  63. 63.
    K. Dautenhahn, S. Woods, C. Kaouri, M.L. Walters, K.L. Koay, I. Werry, What is a robot companion – friend, assistant or butler?, in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, Edmonton, 2005), pp. 1192–1197Google Scholar
  64. 64.
    D. Li, P.L.P. Rau, Y. Li, A cross-cultural study: effect of robot appearance and task. Int. J. Soc. Robot. 2, 175–186 (2010)CrossRefGoogle Scholar
  65. 65.
    F. Ferland, D. Létourneau, A. Aumont, J. Frémy, M.-A. Legault, M. Lauria, F. Michaud, Natural interaction design of a humanoid robot. J. Hum. Robot. Interact. Spec. Issue HRI Perspect. Proj. Globe 1, 14–29 (2012)Google Scholar
  66. 66.
    M.K. Lee, J. Forlizzi, P.E. Rybski, F. Crabbe, W. Chung, J. Finkle, E. Claser, S. Kiesler, The Snackbot: documenting the design of a robot for long-term human-robot interaction, in Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction (ACM, New York, 2009)Google Scholar
  67. 67.
    H.G. Nelson, E. Stolterman, The Design Way (Educational Technology Publication, Englewood Cliffs, 2003)Google Scholar
  68. 68.
    J. Fasola, M. Mataric, A socially assistive robot exercise coach for the elderly. J. Hum. Robot. Interact. 2, 3–32 (2013)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • François Ferland
    • 1
  • Roxana Agrigoroaie
    • 1
  • Adriana Tapus
    • 1
  1. 1.Robotics and Computer Vision LabU2IS, ENSTA-ParisTechPalaiseau CedexFrance

Personalised recommendations