Joint Action in Humans: A Model for Human-Robot Interaction

  • Arianna CurioniEmail author
  • Gunther Knoblich
  • Natalie Sebanz
Reference work entry


This chapter provides an overview of theory and data from joint action research in humans that is potentially relevant for research on human-robot interaction. We will work with a broad definition that refers to joint actions as the coordinated actions of multiple agents that bring about a change in the environment. Such joint actions are pervasive in our everyday life. A growing body of literature has unraveled different cognitive and behavioral mechanisms that allow humans to perform actions together. We will review work on representational and attentional processes that enable agents to plan and prepare joint actions, and motor and communicative behaviors that enable agents to sustain spatial and temporal coordination of their actions over time. Finally, we will review empirical evidence on human-robot interactions and single out open questions that could help to improve human-robot interaction. We conclude that treating joint action in humans as a model for human-robot interaction may be crucial for improving the design of robotic agents that master the necessary interactive tools to engage in cooperation.


  1. 1.
    M.E. Bratman, Ethics 104, 97–113 (1993)CrossRefGoogle Scholar
  2. 2.
    G. Knoblich, N. Sebanz, Philos. Trans. R. Soc. B 363, 2021–2031 (2008)CrossRefGoogle Scholar
  3. 3.
    M. Tomasello, M. Carpenter, J. Call, T. Behne, H. Moll, Behav. Brain Sci. 28(5), 675–691 (2005)Google Scholar
  4. 4.
    F. Warneken, F. Chen, M. Tomasello, Child Dev.77, 640–663 (2006)CrossRefGoogle Scholar
  5. 5.
    A.P. Melis, B. Hare, M. Tomasello, Anim. Behav. 72(2), 275–286 (2006)CrossRefGoogle Scholar
  6. 6.
    S. Yamamoto, T. Humle, M. Tanaka, Proc. Natl. Acad. Sci. U.S.A. 109(9), 3588–3592 (2012)CrossRefGoogle Scholar
  7. 7.
    F. Visco-Comandini, S. Ferrari-Toniolo, E. Satta, O. Papazachariadis, R. Gupta, L.E. Nalbant, A. Battaglia-Mayer, Cortex 70, 115–127 (2015)CrossRefGoogle Scholar
  8. 8.
    J.M. Plotnik, R. Lair, W. Suphachoksahakun, F.B. De Waal, Proc. Natl. Acad. Sci. U.S.A. 108(12), 5116–5121 (2011)CrossRefGoogle Scholar
  9. 9.
    C. Vesper, S. Butterfil, G. Knoblich, N. Sebanz, Neural Netw. 23(8), 998–1003 (2010)CrossRefGoogle Scholar
  10. 10.
    M.J. Richardson, K.L. Marsh, R.C. Schmidt, Hum. Mov. Sci. 26, 867–891 (2008)CrossRefGoogle Scholar
  11. 11.
    N. Sebanz, H. Bekkering, G. Knoblich, Trends Cogn. Sci. 10, 70–76 (2006)CrossRefGoogle Scholar
  12. 12.
    M. Tomasello, The Cultural Origins of Human Cognition (Harvard University Press, Cambridge, Massachussets 2009)Google Scholar
  13. 13.
    K. Hamann, F. Warneken, M. Tomasello, Child Dev.83, 137–145 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Michael, N. Sebanz, G. Knoblich, Front. Psychol. 6, 1968 (2015)Google Scholar
  15. 15.
    J. Michael, N. Sebanz, G. Knoblich, Cognition 157, 106 (2016)CrossRefGoogle Scholar
  16. 16.
    R. Flanagan, R.S. Johansson, Nature 424, 769–771 (2003)CrossRefGoogle Scholar
  17. 17.
    M. Wilson, G. Knoblich, Psychol. Bull. 131(3), 460–473 (2005)CrossRefGoogle Scholar
  18. 18.
    A. Böckler, N. Sebanz, in Joint Attention and Metacognition, ed. by J. Metcalfe, H. Terrace (Eds), (Oxford University Press, New York, 2013), p. 206Google Scholar
  19. 19.
    D. Samson, I.A. Apperly, J.J. Braithwaite, B.J. Andrews, S.E. Bodley Scott, J. Exp. Psychol. Hum. Percept. Perform. 36(5), 1255–1266 (2010)CrossRefGoogle Scholar
  20. 20.
    M. Freundlieb, A.M. Kovacs, N. Sebanz, J. Exp. Psychol. Hum. Percept. Perform. 42(3), 401–412 (2015)CrossRefGoogle Scholar
  21. 21.
    Surtees, D. Samson, I. Apperly, Cognition 148, 97–105 (2016)CrossRefGoogle Scholar
  22. 22.
    M.J. Richardson, M.L. Marsh, R.W. Isenhower, J.R.L. Goodman, R.C. Schmidt, Hum. Mov. Sci.26(6), 867–891 (2007)Google Scholar
  23. 23.
    M.L. Marsh, M.J. Richardson, R. Schmidt, Top. Cogn. Sci. 1, 320–339 (2009)CrossRefGoogle Scholar
  24. 24.
    J. Gibson, in Perceiving, Acting, and Knowing, ed. by R. Shaw, J. Bransford (Eds), (Lawrence Erlbaum Associates, Hillsdale, 1977)Google Scholar
  25. 25.
    G. Knoblich, S. Butterfil, N. Sebanz, Psychological research on joint action: theory and data, in Psychology of Learning and Motivation ed. by B. Ross. Advances in Research and Theory, vol. 54 (Academic, Burlington, 2011), p. 59CrossRefGoogle Scholar
  26. 26.
    T.L. Chartrand, J.A. Bargh, J. Pers. Soc. Psychol.76(6), 893–910 (1999)Google Scholar
  27. 27.
    M. Brass, H. Bekkering, W. Prinz, Acta Psychol. 106(1–2), 3–22 (2001)CrossRefGoogle Scholar
  28. 28.
    Kilner interference effect for biological motion CB 2003Google Scholar
  29. 29.
    T.L. Chartrand, J.L. Lakin, Annu. Rev. Psychol. 64, 285–308 (2013)CrossRefGoogle Scholar
  30. 30.
    C. Vesper, R.P.R.D. van der Wel, G. Knoblich, N. Sebanz, Exp. Brain Res.211(3–4), 517–530 (2011)Google Scholar
  31. 31.
    C. Vesper, L. Schmitz, L. Safra, N. Sebanz, G. Knoblich, Cognition 153, 118–123 (2016)CrossRefGoogle Scholar
  32. 32.
    D.M. Wolpert, K. Doya, M. Kawato, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 358(1431), 593–602 (2003)CrossRefGoogle Scholar
  33. 33.
    C. Vesper, R.P.R.D. van der Wel, G. Knoblich, N. Sebanz, J. Exp. Psychol. Hum. Percept. Perform. 39, 48–61 (2013)CrossRefGoogle Scholar
  34. 34.
    D. Kourtis, N. Sebanz, G. Knoblich, Soc. Neurosci. 8, 1 (2013)CrossRefGoogle Scholar
  35. 35.
    D. Kourtis, G. Knoblich, M. Woźniak, N. Sebanz, J. Cogn. Neuosci. 26(10), 2275–2286 (2014)CrossRefGoogle Scholar
  36. 36.
    J. Loehr, D. Kourtis, C. Vesper, N. Sebanz, G. Knoblich, J. Cogn. Neurosci. 25, 1049–1061 (2013)CrossRefGoogle Scholar
  37. 37.
    I. Konvalinka, P. Vuust, A. Roepstorff, C.D. Frith, Q. J. Exp. Psychol. 63(11), 2220–2230 (2010)CrossRefGoogle Scholar
  38. 38.
    J. Skewes, L. Skewes, J. Michael, I. Kovalinka, Exp. Brain Res.233(2), 551–565 (2015)Google Scholar
  39. 39.
    M.J. Richardson, S.J. Harrison, R.W. Kallen, A. Walton, B.A. Eiler, E. Saltzman, R.C. Schmidt, J. Exp. Psychol. Hum. Percept. Perform. 41(3), 665–679 (2015)CrossRefGoogle Scholar
  40. 40.
    L. Noy, E. Dekel, U. Alon, Proc. Natl. Acad. Sci. U.S.A. 108(52), 20947–20952 (2011)CrossRefGoogle Scholar
  41. 41.
    L. Sartori, A. Cavallo, G. Bucchioni, U. Castiello, Exp. Brain Res. 211(3–4), 547–556 (2011)Google Scholar
  42. 42.
    C. Ansuini, A. Cavallo, C. Bertone, C. Becchio, Front. Psychol. 5, 815 (2014)CrossRefGoogle Scholar
  43. 43.
    S.M. Aglioti, P. Cesari, M. Romani, C. Urgesi, Nat. Neurosci. 11(9), 1109–1116 (2008)CrossRefGoogle Scholar
  44. 44.
    M.D. Constable, A. Kritikos, A.P. Bayliss, Cognition 119(3), 430–437 (2011)CrossRefGoogle Scholar
  45. 45.
    G. Pezzulo, H. Dindo, Exp. Brain Res. 211, 613–630 (2011)CrossRefGoogle Scholar
  46. 46.
    G. Pezzulo, F. Donnarumma, H. Dindo, PLoS ONE 8, e79876 (2013)CrossRefGoogle Scholar
  47. 47.
    C. Vesper, M.J. Richardson, Exp. Brain Res. 232(9), 2945–2956 (2014)CrossRefGoogle Scholar
  48. 48.
    L.M. Sacheli, E. Tidoni, E.F. Pavone, S.M. Aglioti, M. Candidi, Exp. Brain Res. 226, 473–486 (2013)CrossRefGoogle Scholar
  49. 49.
    M. Candidi, A. Curioni, F. Donnarumma, L.M. Sacheli, G. Pezzulo, J. R. Soc. Interface 12, 0644 (2015)CrossRefGoogle Scholar
  50. 50.
    A.D. Dragan, K.C. Lee, S.S. Srinivasa, in 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (IEEE, Cambridge, Massachussets 2013), pp. 301–308Google Scholar
  51. 51.
    C.M. Huang, M. Cakmak, B. Mutlu, in Proceedings of Robotics: Science and Systems (2015)Google Scholar
  52. 52.
    G. Hoffman, G. Weinberg, G. Auton, Robots 31(2–3), 133–153 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Arianna Curioni
    • 1
    Email author
  • Gunther Knoblich
    • 1
  • Natalie Sebanz
    • 1
  1. 1.Department of Cognitive ScienceCentral European UniversityBudapestHungary

Personalised recommendations