Advertisement

Toward New Humanoid Applications: Wearable Device Evaluation Through Human Motion Reproduction

  • Eiichi Yoshida
  • Ko Ayusawa
  • Yumeko Imamura
  • Takayuki Tanaka
Reference work entry

Abstract

This chapter addresses a new application of humanoid robot for evaluation of wearable assistive devices. One of the issues for diffusion of assistive devices that has been developed recently is its objective and qualitative evaluation to validate its assistive effects. Human subject experiments that have frequently been used have several drawbacks such as heavy ethical procedures, repeatability, and subjectivity coming from tests with questionnaires. A humanoid robot with humanlike structure and shape has potential to be used as an “active mannequin.” By reproducing human motions based on a technique called retargeting, a humanoid robot can test wearable devices instead of a human. It has advantages as it can repeat the same motions to test the product under the same conditions, and it has no ethical risks. The largest advantage is its capacity of quantitative evaluation by measuring joint torques, which allows direct validation of supportive torque generated by the device. By taking an example of a supportive wear “Smart Suit Lite” supporting the user’s lower back by elastic bands, we will overview the evaluation framework of humanoid-based assistive device evaluation, including human motion retargeting, experimental device evaluation with humanoid HRP-4C, and validation of the accuracy of the results using an identification method.

References

  1. 1.
    K. Ayusawa, M. Morisawa, E. Yoshida, Motion retargeting for humanoid robots based on identification to preserve and reproduce human motion features, in Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015, pp. 2774–2779Google Scholar
  2. 2.
    K. Ayusawa, S. Nakaoka, E. Yoshida, Y. Imamura, T. Tanaka, Evaluation of assistive devices using humanoid robot with mechanical parameters identification, in Proceedings of the 2014 IEEE-RAS International Conference on Humanoid Robots, 2014, pp. 205–211Google Scholar
  3. 3.
    K. Ayusawa, G. Venture, Y. Nakamura, Identifiability and identification of inertial parameters using the underactuated base-link dynamics for legged multibody systems. Int. J. Robot. Res. 33(3), 446–468 (2014)CrossRefGoogle Scholar
  4. 4.
    K. Ayusawa, E. Yoshida, Y. Imamura, T. Tanaka, New evaluation framework for human-assistive devices based on humanoid robotics. Adv. Robot. 30(8), 519–534 (2016). https://doi.org/10.1080/01691864.2016.1145596CrossRefGoogle Scholar
  5. 5.
    M. Gleicher, Retargetting motion to new characters, in Proceedings of the SIGGRAPH’98, 1998, pp. 33–42Google Scholar
  6. 6.
    Y. Imamura, T. Tanaka, K. Ayusawa, E. Yoshida, Verification of passive power-assist device using humanoid robot: effect on bending and twisting motion, in Proceedings of the 2015 IEEE-RAS International Conference on Humanoid Robots, 2015, pp. 1149–1154Google Scholar
  7. 7.
    Y. Imamura, T. Tanaka, Y. Suzuki, K. Takizawa, M. Yamanaka, Motion-based-design of elastic material for passive assistive device using musculoskeletal model. J. Robot. Mechatron. 23(6), 978–990 (2011)CrossRefGoogle Scholar
  8. 8.
    T. Ito, K. Ayusawa, E. Yoshida, H. Kobayashi, Stationary Torque Replacement for Evaluation of Active Assistive Devices using Humanoid Proceedings of 2016 IEEE-RAS International Conference on Humanoid Robots, 2016, pp.739–744Google Scholar
  9. 9.
    S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, in Proceedings of the IEEE International Conference on Robotics and Automation, 2004, pp. 840–845Google Scholar
  10. 10.
    K. Kaneko, F. Kanehiro, M. Morisawa, K. Akachi, G. Miyamori, A. Hayashi, N. Kanehira, Humanoid robot HRP-4 – humanoid robotics platform with lightweight and slim body, in Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 4400–4407Google Scholar
  11. 11.
    K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka, K. Yokoi, Cybernetic human HRP-4C, in Proceedings of the 2009 IEEE-RAS International Conference on Humanoid Robots, 2009, pp. 7–14Google Scholar
  12. 12.
    H. Kobayashi, T. Aida, T. Hashimoto, Muscle suit development and factory application. Int. J. Autom. Technol. 3(6), 709–715 (2009)CrossRefGoogle Scholar
  13. 13.
    H. Kobayashi, D. Matsushita, Y. Ishida, K. Kikuchi, New robot technology concept applicable to human physical support – the concept and possibility of the muscle suit (wearable muscular support apparatus). J. Robot. Mechatron. 14(1), 46–53 (2002)CrossRefGoogle Scholar
  14. 14.
    Y. Kume, H. Kawakami, Control technology of RoboticBed® for supporting independent life. Panasonic Tech. Rep. 56(3), 32–34 (2010)Google Scholar
  15. 15.
    K. Miura, M. Morisawa, S. Nakaoka, K. Harada, K. Kaneko, S. Kajita, Robot motion remix based on motion capture data – towards human-like locomotion of humanoid robots, in Proceedings of the 2009 IEEE-RAS International Conference on Humanoid Robots, 2009, pp. 596–603Google Scholar
  16. 16.
    K. Miura, E. Yoshida, Y. Kobayashi, Y. Endo, F. Kanehiro, K. Homma, I. Kajitani, Y. Matsumoto, T. Tanaka, Humanoid robot as an evaluator of assistive devices, in Proceedings of the 2013 IEEE International Conference Robotics and Automation, 2013, pp. 671–677Google Scholar
  17. 17.
    Y. Nakamura, K. Yamane, I. Suzuki, Somatosensory computation for man-machine interface from motion-capture data and musculoskeletal human model. IEEE Trans. Robot. 21(1), 58–66 (2005)CrossRefGoogle Scholar
  18. 18.
    S. Nakaoka, T. Komura, Interaction mesh based motion adaptation for biped humanoid robots, in Proceedings of the 2012 IEEE-RAS International Conference on Humanoid Robots, 2012, pp. 625–631Google Scholar
  19. 19.
    S. Nakaoka, A. Nakazawa, F. Kanehiro, K. Kaneko, M. Morisawa, H. Hirukawa, K. Ikeuchi, Learning from observation paradigm: leg task models for enabling a biped humanoid robot to imitate human dances. Int. J. Robot. Res. 26, 829–844 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Nakaoka, A. Nakazawa, K. Yokoi, K. Ikeuchi, Leg motion primitives for a dancing humanoid robot, in Proceedings of the IEEE International Conference on Robotics and Automation, 2004, pp. 610–615Google Scholar
  21. 21.
    Y. Ogura, H. Aikawa, K. Shimomura, H. Kondo, A. Morishima, H.O. Lim, A. Takanishi, Development of a new humanoid robot WABIAN-2, in Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006, pp. 76–81Google Scholar
  22. 22.
    A.M. Omer, H. Kondo, H. Lim, A. Takanishi, Development of walking support system based on dynamic simulation, in Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics, 2008, pp. 137–142Google Scholar
  23. 23.
    F. Petit, A. Dietrich, A. Albu-Schäffer, Generalizing torque control concepts: using well-established torque control methods on variable stiffness robots. IEEE Robot. Autom. Mag. 22(4), 37–15 (2015)CrossRefGoogle Scholar
  24. 24.
    Robotic Devices for Nursing Care Project (2013), http://robotcare.jp/
  25. 25.
  26. 26.
    Y. Sankai, HAL: hybrid assistive limb based on cybernics, in Robotics Research, ed. by M. Kaneko, Y. Nakamura. Springer Tracts in Advanced Robotics (Springer, Berlin, Heidelberg, 2011), pp. 25–34Google Scholar
  27. 27.
    P.L. Santaguida, M. Pierrynowski, C. Goldsmith, G. Fernie, Comparison of cumulative low back loads of caregivers when transferring patients using overhead and floor mechanical lifting devices. Clin. Biomech. 20(9), 906–916 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Eiichi Yoshida
    • 1
  • Ko Ayusawa
    • 2
  • Yumeko Imamura
    • 3
  • Takayuki Tanaka
    • 4
  1. 1.CNRS-AIST JRL (Joint Robotics Laboratory), UMI3218/RLNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.CNRS-AIST JRL (Joint Robotics Laboratory), UMI3218/RLIntelligent Systems Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  3. 3.CNRS-AIST JRL (Joint Robotics Laboratory) UMI3218/RLIntelligent Systems Research InstituteTsukubaJapan
  4. 4.Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan

Personalised recommendations