Humanoid Robots for Entertainment

  • Steven “Mouse” SilversteinEmail author
  • Katsu Yamane
Reference work entry


Entertainment is an important application for humanoid robots because anthropomorphism is critical to the physical embodiment of characters, many of which have humanlike appearances and motions. This chapter first reviews the history of Audio-Animatronics®, the family of robots used in Disney theme parks for over half a century. We then discuss the unique requirements of robotics for entertainment application and introduce some of the recent developments in robotics research at Walt Disney Imagineering and Disney Research.


  1. 1.
    M. Gleicher, Retargetting motion to new characters, in Proceedings of SIGGRAPH, 1998, pp. 33–42Google Scholar
  2. 2.
    K. Yamane, Y. Nakamura, Dynamics filter—concept and implementation of on-line motion generator for human figures. IEEE Trans. Robot. Autom. 19(3), 421–432 (2003)CrossRefGoogle Scholar
  3. 3.
    S. Nakaoka, A. Nakazawa, F. Kanehiro, K. Kaneko, M. Morisawa, H. Hirukawa, K. Ikeuchi, Learning from observation paradigm: Leg task models for enabling a biped humanoid robot to imitate human dances. Int. J. Robot. Res. 26(8), 829–844Google Scholar
  4. 4.
    K. Yamane, S.O. Anderson, J.K. Hodgins, Controlling humanoid robots with human motion data: experimental validation, in Proceedings of IEEE-RAS International Conference on Humanoid Robots, 2010, pp. 504–510Google Scholar
  5. 5.
    C. Bregler, L. Loeb, E. Chuang, E. Deshpande, Turning to the masters: motion capturing cartoons, Proceedings of SIGGRAPH, 2002, pp. 399–407Google Scholar
  6. 6.
    K. Yamane, Y. Ariki, J.K. Hodgins, Animating non-humanoid characters with human motion capture data, in Proceedings of Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2010, pp. 169–178Google Scholar
  7. 7.
    S. Song, J. Kim, K. Yamane, Development of a bipedal robot that walks like an animation character, IEEE International Conference on Robotics and Automation, 2015, pp. 3596–3602Google Scholar
  8. 8.
    M. Vukobratovic, B. Borovac, Zero-moment point: thirty five years of its life. Int. J. Humanoid Robot. 1(1), 157–173 (2004)CrossRefGoogle Scholar
  9. 9.
    Gizmodo, Disneyland is testing new interactive Droids that will roam its expanded Star Wars land, 2016Google Scholar
  10. 10.
    PARO Robots, PARO Therapeutic Robot, 2016Google Scholar
  11. 11.
    S. Jeong, S. Dos Santos, K. Graca, B. O’Connell, L. Anderson, N. Stenquist, K. Fitzpatrick, H. Goodenough, D. Logan, P. Weinstock, C. Breazeal, Designing a socially assistive robot for pediatric care, in Proceedings of the 14th International Conference on Interaction Design and Children, 2015, pp. 387–390Google Scholar
  12. 12.
    J. Kober, M. Glisson, M. Mistry, Playing catch and juggling with a humanoid robot, in IEEE-RAS International Conference on Humanoid Robots, 2012, pp. 875–881Google Scholar
  13. 13.
    U. Frese, B. Bauml, S. Haidacher, G. Schreiber, I. Schaefer, M. Hahnle, G. Hirzinger, Off-the-shelf vision for a robotic ball catcher, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001, pp. 1623–1629Google Scholar
  14. 14.
    M. Riley, C.G. Atkeson, Robot catching: towards engaging human-humanoid interaction. Auton. Robot. 12(1), 119–128 (2002)CrossRefGoogle Scholar
  15. 15.
    A. Namiki, Y. Imai, M. Ishikawa, M. Kaneko, Development of a high-speed multifingered hand system and its application to catching, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003, pp. 2666–2671Google Scholar
  16. 16.
    E.J. Carter, M.N. Mistry, G.P.K. Carr, B.A. Kelly, J.K. Hodgins, Playing catch with robots: Incorporating social gestures into physical interactions, in IEEE International Symposium on Robot and Human Interactive Communication, 2014, pp. 231–236Google Scholar
  17. 17.
    A. Alspach, J. Kim, K. Yamane, Design of a soft upper body robot for physical human-robot interaction, in IEEE-RAS International Conference on Humanoid Robots, 2015, pp. 290–296Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Walt Disney Parks and ResortsU.S. Inc.Lake Buena VistaUSA
  2. 2.Disney ResearchPittsburghUSA

Personalised recommendations