Advertisement

Range Sensors: Ultrasonic Sensors, Kinect, and LiDAR

  • Jongmoo Choi
Reference work entry

Abstract

We present an introductory summary of range sensing technologies including ultrasonic sensors, RGB-D cameras, time-of-flight (TOF) cameras, and LiDAR sensors. For each technology, we briefly introduce the principle of the range sensors, representative commercial products, comparisons, and main applications. We also provide key algorithmic methods to process range data, such as point cloud registration, and some useful software tools. As the detailed knowledge can easily be found from the literature or the Internet, we focus on the big picture of the sensing technologies.

References

  1. 1.
    M. Grosse, J. Buehl, H. Babovsky, A. Kiessling, R. Kowarschik, 3D shape measurement of macroscopic objects in digital off-axis holography using structured illumination. Opt. Lett. 35(8), 1233–1235 (2010)CrossRefGoogle Scholar
  2. 2.
    H.M. Frost, Electromagnetic-ultrasound transducers: principles, practice, and applications. Phys. Acoust. 14, 179–276 (2012)Google Scholar
  3. 3.
    B. Rafaely, Optimal Beam Pattern Design (Springer, Berlin/Heidelberg, 2015), pp. 125–153Google Scholar
  4. 4.
    J.A. Jiménez, M. Mazo, J. Urena, A. Hernández, F. Alvarez, J. Garcia, E. Santiso, Using PCA in time-of-flight vectors for reflector recognition and 3-D localization. IEEE Trans. Robot. 21(5), 909–924 (2005)CrossRefGoogle Scholar
  5. 5.
    S.A. Bouhamed, I.K. Kallel, D.S. Masmoudi, Stair case detection and recognition using ultrasonic signal, in 2013 36th International Conference on Telecommunications and Signal Processing (TSP) (IEEE, 2013), pp. 672–676Google Scholar
  6. 6.
    J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRefGoogle Scholar
  7. 7.
    H. Chen, D. Ni, J. Qin, S. Li, X. Yang, T. Wang, P.A. Heng, Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J. Biomed. Health Inform. 19(5), 1627–1636 (2015)CrossRefGoogle Scholar
  8. 8.
    Wikipedia, Triangulation – Wikipedia, the free encyclopedia (2017). [Online; Accessed 1 July 2017]Google Scholar
  9. 9.
    R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision. (Cambridge university press, Cambridge, 2003)Google Scholar
  10. 10.
    S. Lee, J. Choi, D. Kim, J. Na, S. Oh, Signal separation coding for robust depth imaging based on structured light, in Proceedings of the 2005 IEEE International Conference on Robotics and Automation (IEEE, 2005), pp. 4430–4436Google Scholar
  11. 11.
    D. Moreno, G. Taubin, Simple, accurate, and robust projector-camera calibration, in 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT) (IEEE, 2012), pp. 464–471Google Scholar
  12. 12.
    B. Freedman, A. Shpunt, M. Machline, Y. Arieli, Depth mapping using projected patterns, 3 Apr 2012. US Patent 8,150,142Google Scholar
  13. 13.
    R. Min, J. Choi, G. Medioni, and Jean-Luc Dugelay, Real-time 3D face identification from a depth camera, in 2012 21st International Conference on Pattern Recognition (ICPR) (IEEE, 2012), pp. 1739–1742Google Scholar
  14. 14.
    J. Suarez, R.R. Murphy, Hand gesture recognition with depth images: a review, in Ro-man, 2012 IEEE (IEEE, 2012), pp. 411–417Google Scholar
  15. 15.
    M. Hernandez, J. Choi, G. Medioni, Near laser-scan quality 3-D face reconstruction from a low-quality depth stream. Image Vis. Comput. 36, 61–69 (2015)CrossRefGoogle Scholar
  16. 16.
    R. Wang, J. Choi, G. Medioni, Accurate full body scanning from a single fixed 3D camera, in 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT) (IEEE, 2012), pp. 432–439Google Scholar
  17. 17.
    R.A. El-laithy, J. Huang, M. Yeh, Study on the use of microsoft kinect for robotics applications, in Position Location and Navigation Symposium (PLANS), 2012 IEEE/ION (IEEE, 2012), pp. 1280–1288Google Scholar
  18. 18.
    J.K. Aggarwal, L. Xia, Human activity recognition from 3D data: a review. Pattern Recogn. Lett. 48, 70–80 (2014)CrossRefGoogle Scholar
  19. 19.
    B. Schwarz, LiDAR: mapping the world in 3D. Nat. Photonics 4(7), 429–430 (2010)CrossRefGoogle Scholar
  20. 20.
    LiDAR: driving the future of autonomous navigation (a frost & sullivan exclusive whitepaper for analysis of LiDAR technology for advanced safety) (2016). http://velodynelidar.com/docs/papers/FROST-ON-LiDAR.pdf
  21. 21.
    H. Moradi, J. Choi, E. Kim, S. Lee, A real-time wall detection method for indoor environments, in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2006), pp. 4551–4557Google Scholar
  22. 22.
    Wikipedia, Interferometry – Wikipedia, the free encyclopedia, 2017. [Online; Accessed 1 July 2017]Google Scholar
  23. 23.
    A. Kadambi, J. Schiel, R. Raskar, Macroscopic interferometry: rethinking depth estimation with frequency-domain time-of-flight, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 893–902Google Scholar
  24. 24.
    S.R. Fanello, C. Rhemann, V. Tankovich, A. Kowdle, S.O. Escolano, D. Kim, S. Izadi, Hyperdepth: learning depth from structured light without matching, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 5441–5450Google Scholar
  25. 25.
    M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  26. 26.
    J. Choi, G. Medioni, Starsac: stable random sample consensus for parameter estimation, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2009), pp. 675–682Google Scholar
  27. 27.
    R.B. Rusu, S. Cousins, 3D is here: point cloud library (PCL), in IEEE International Conference on Robotics and Automation (ICRA), Shanghai, 9–13 May 2011Google Scholar
  28. 28.
    Point cloud library (PCL) (2016), http://pointclouds.org/ [Online; Accessed 27 July 2016]
  29. 29.
    CGAL: computational geometry algorithms library (2016), http://www.cgal.org/ [Online; Accessed 27 July 2016]
  30. 30.
    CGAL: computational geometry algorithms library – documentation (2016), http://doc.cgal.org/latest/Poisson_surface_reconstruction_3/ [Online; Accessed 27 July 2016]
  31. 31.
    O. Kreylos, G.W. Bawden, L.H. Kellogg, Immersive visualization and analysis of LiDAR data, in International Symposium on Visual Computing (Springer, 2008), pp. 846–855Google Scholar
  32. 32.
    R. Wang, J. Choi, G. Medioni, 3D modeling from wide baseline range scans using contour coherence, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014), pp. 4018–4025Google Scholar
  33. 33.
    C. Jun, J. Youn, J. Choi, G. Medioni, N.L. Doh, Convex cut: a realtime pseudo-structure extraction algorithm for 3D point cloud data, in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2015), pp. 3922–3929Google Scholar
  34. 34.
    M. Hernandez, J. Choi, G. Medioni, Laser scan quality 3-D face modeling using a low-cost depth camera, in 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO) (IEEE, 2012), pp. 1995–1999Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations