Advertisement

Seagrasses

  • Frederick T. Short
  • Cathy A. Short
  • Alyssa B. Novak
Reference work entry

Abstract

Seagrass meadows are a critical component of the coastal marine environment worldwide, providing some of the most economically and environmentally valuable ecosystem services of any marine habitat. These marine angiosperms form extensive meadows that store carbon, improve water quality, provide food and habitat, and act as biological indicators. These unique marine flowering plants are found mainly in clear, shallow estuaries and coastal waters where they propagate both sexually and vegetatively, with 72 species worldwide. They provide habitat for juvenile fish and shellfish and are eaten by sea turtles, dugong and manatee as well as waterfowl. Seagrasses grow both intertidally and subtidally in all the tropical and temperate ocean. Despite their importance, seagrass meadows are experiencing high rates of loss globally due to direct threats such as sedimentation, eutrophication, dredging and aquaculture, as well as diffuse threats such as water quality losses and climate change. All seagrass species have been evaluated for the IUCN Red List of Threatened and Endangered Species, with 14% at elevated risk of extinction. Strong science-based management and regulatory strategies are needed to maintain and increase seagrass habitats, as well as build their resilience to stressors in a globally changing environment.

Keywords

Seagrass Angiosperm Carbon storage Coastal habitat Submerged marine flowering plants Vascular plants Estuarine vegetation Zostera 

References

  1. Björk M, Short F, Mcleod E, Beer S. Managing seagrasses for resilience to climate change. Gland: IUCN; 2008. 56pp.Google Scholar
  2. Cabot S. Memories of the Cabot’s Quilt. Yankee, November 1986.Google Scholar
  3. Coles R, Short F, Fortes M, Kuo J. Twenty years of seagrass networking and advancing seagrass science: the international seagrass biology workshop series. Pac Conserv Biol. 2014;20:8–16.Google Scholar
  4. Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK. Changes in the global value of ecosystem services. Glob Environ Chang. 2014;26:152–8.CrossRefGoogle Scholar
  5. Cullen-Unsworth LC, Nordlund LM, Paddock J, Baker S, McKenzie L, Unsworth RKF. Seagrass meadows globally as a coupled social-ecological system: implications for human wellbeing. Mar Pollut Bull. 2014;83:387–97.CrossRefPubMedGoogle Scholar
  6. den Hartog C. The seagrasses of the world. Verh K Ned Akad Wetenschappen Afdeling Natuurkunde. 1970;59:1–275.Google Scholar
  7. Duarte CM, Chiscano CL. Seagrass biomass and production: a reassessment. Aquat Bot. 1999;65:159–74.CrossRefGoogle Scholar
  8. Gillanders BM. Seagrasses, fish and fisheries. In: Larkum AWD, Orth R, Duarte C, editors. Seagrasses: biology, ecology and conservation. Dordrecht: Springer; 2006. p. 503–36.Google Scholar
  9. Green EP, Short FT, editors. World atlas of seagrasses. Berkeley: University of California Press; 2003. 324 pp.Google Scholar
  10. Hemminga MA, Duarte CM. Seagrass ecology. Cambridge, UK: Cambridge University Press; 2000. 298 pp.CrossRefGoogle Scholar
  11. McGlathery KJ, Sundback K, Anderson IC. Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Mar Ecol Prog Ser. 2007;348:1–18.CrossRefGoogle Scholar
  12. Milne LJ, Milne MJ. The eelgrass catastrophe. Sci Am. 1951;184:52–5.Google Scholar
  13. Novak AB, Short FT. Leaf reddening in seagrasses. Bot Mar. 2010;53:93–7.CrossRefGoogle Scholar
  14. Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck Jr KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL. A global crisis for seagrass ecosystems. Bioscience. 2006;56:987–96.CrossRefGoogle Scholar
  15. Short FT, Wyllie-Echeverria S. Natural and human-induced disturbance of seagrasses. Environ Conserv. 1996;23:17–27.CrossRefGoogle Scholar
  16. Short FT, Dennison WC, Carruthers JTB, Waycott M. Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol. 2007;350:3–20.CrossRefGoogle Scholar
  17. Short FT, Polidoro B, Livingstone SR, Carpenter KE, Bandeira S, Bujang JS, Calumpong HP, Carruthers TJB, Coles RG, Dennison WC, Erftemeijer PLA, Fortes MD, Freeman AS, Jagtap TG, Kamal AHM, Kendrick GA, Kenworthy WJ, La Nafie YA, Nasution IM, Orth RJ, Prathep A, Sanciangco JC, van Tussenbroek B, Vergara SG, Waycott M, Zieman JC. Extinction risk assessment of the world’s seagrass species. Biol Conserv. 2011;144:1961–71.CrossRefGoogle Scholar
  18. Short FT, Kosten S, Morgan P, Malone S, Moore G. Present and future impacts of climate change on submerged and emergent wetland plants: a review. In: Aquat. Bot. special issue: “40 years of Aquatic Botany”; 2016. http://dx.doi.org/10.1016/j.aquabot.2016.06.006.
  19. Spalding M, Taylor M, Ravilious C, Short F, Green E. Global overview: the distribution and status of seagrasses. In: Green EP, Short FT, editors. World atlas of seagrasses. Berkeley: University of California Press; 2003. p. 5–26.Google Scholar
  20. Valentine JF, Duffy JE. The central role of grazing in seagrass ecology. In: Larkum AWD, Orth R, Duarte C, editors. Seagrasses: biology, ecology and conservation. Dordrecht: Springer; 2006. p. 463–501.Google Scholar
  21. Virnstein RW, Hall LM. Northern range extension of the seagrasses Halophila johnsonii and Halophila decipiens along the east coast of Florida, USA. Aquat Bot. 2009;90:89–92.CrossRefGoogle Scholar
  22. Waycott M, Procaccini G, Les DH, Reusch TBH. Seagrass evolution, ecology and conservation: a genetic perspective. In: Larkum AWD, Orth R, Duarte C, editors. Seagrasses: biology, ecology and conservation. Dordrecht: Springer; 2006. p. 25–50.Google Scholar
  23. Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck Jr KL, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci. 2009;106:12377–81.CrossRefPubMedGoogle Scholar
  24. Willette DA, Chalifour J, Debrot AOD, Engel MS, Miller J, Oxenford HA, Short FT, Steiner SCC, Védie F. Continued expansion of the trans-Atlantic invasive marine angiosperm Halophila stipulacea in the Eastern Caribbean. Aquat Bot. 2014;112:98–102.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Frederick T. Short
    • 1
  • Cathy A. Short
    • 2
  • Alyssa B. Novak
    • 3
  1. 1.Department of Natural Resources and the Environment, Jackson Estuarine LaboratoryUniversity of New HampshireDurhamUSA
  2. 2.LeeUSA
  3. 3.Boston University, Earth and EnvironmentBostonUSA

Personalised recommendations