The Wetland Book pp 1585-1593 | Cite as

Earth Observation Methods for Wetlands: Overview

  • Richard LucasEmail author
Reference work entry


Across their range, wetlands are highly complex and dynamic and have been observed by a wide and diverse range of ground, airborne, and spaceborne sensors. The methods applied for characterizing, mapping, and monitoring mangroves are therefore diverse but have focused primarily on mapping state (i.e., water, ice, or snow) and extent as well as persistence and duration, sediment loads, substrate characteristics, and tidal fluctuations. A number of indices, algorithms, and models have been specifically developed to understand the changing states of wetlands, with these including mangroves, sea grasses, bogs, mires and fens, tropical floodplains, and semiarid wetlands. Many wetlands are also subject to anthropogenic disturbance as well as natural events and processes. Remote sensing data provide a unique opportunity to track such changes but also to classify these according to the different disturbance types. A number of international programs have also been put in place to advance the use of remote sensing data for wetland observations, with these including the European Space Agency’s (ESA) Globwetland (I, II), the Japan Aerospace Exploration Agency (JAXA’s) Kyoto and Carbon (K&C) Initiative, and the NASA’s Making Earth System Data Records for Use in Research Environments (MEaSUREs) projects.


Remote sensing Water states Biophysical characteristics Human disturbance International projects 


  1. Alsdorf DE, Rodriguez E, Lettenmaier DP. Measuring surface water from space. Rev Geophys. 2007;45(2):RG2002.CrossRefGoogle Scholar
  2. Bartsch A, Wagner W, Scipal K, Pathe C, Sabel D, Wolski P. Global monitoring of wetlands – the value of ENVISAT ASAR global mode. J Environ Manage. 2009;90:2226–33.CrossRefPubMedGoogle Scholar
  3. Cook BD, Bolstad PV, Naesset E, Anderson RS, Garrigues S, Morisette JT, Nikeson J, Davis KJ. Using lidar and quickbird data to model plant production and quantify uncertainties associated with wetland detection and land cover generalisations. Remote Sens Environ. 2009;113:2366–79.CrossRefGoogle Scholar
  4. Costa MPF, Telmer KH. Utilizing SAR imagery and aquatic vegetation to map fresh and brackish lakes in the Brazilian Pantanal wetland. Remote Sens Environ. 2006;105:204–13.CrossRefGoogle Scholar
  5. Dekker AG, Brando VE, Anstee JM. Retrospective seagrass change detection in a shallow coastal tidal Australian lake. Remote Sens Environ. 2005;97:415–33.CrossRefGoogle Scholar
  6. Di Gregorio A, Jansen LJM. Land cover classification system (LCCS): classification concepts and user manual for software version 1.0. Rome: Food and Agricultural Organisation (FAO); 2000.Google Scholar
  7. Dillabaugh KA, King DJ. Riparian marshland composition and biomass mapping using IKONOS imagery. Can J Remote Sens. 2008;34(2):143–58.CrossRefGoogle Scholar
  8. Dozier J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens Environ. 1989;28:9–22.CrossRefGoogle Scholar
  9. Giri G, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N. Status and distribution of Mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr. 2011;20(1):154–9.CrossRefGoogle Scholar
  10. Hess LL, Melack JM, Filoso S, Yong W. Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar. IEEE Trans Geosci Remote Sens. 1995;33:896–904.CrossRefGoogle Scholar
  11. Hess LL, Melack JM, Novo EMLM, Barbosa C, Gastil M. Dual–season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sens Environ. 2003;87:404–28.CrossRefGoogle Scholar
  12. Hoekman DH. Satellite radar observation of tropical peat swamp forest as a tool for hydrological modeling and environmental protection. Aquat Conserv Mar Freshw Ecosyst. 2007;17:265–75.CrossRefGoogle Scholar
  13. Jauhiainen J, Takahashi H, Heikkinen J, Martikainen P, Vasander H. Carbon fluxes from a tropical peat swamp forest floor. Glob Chang Biol. 2005;11:1788–97.CrossRefGoogle Scholar
  14. Jensen AM, Hardy T, McKee M, Yang QC. Using a multispectral autonomous unmanned aerial remote sensing platform (AggieAir) for riparian and wetlands application. Geoscience and Remote Sensing Symposium (IGARSS); 2011. p. 2413–3416.Google Scholar
  15. Jones K, Lanthier Y, van der Voet P, van Valkengoed E, Taylor D, Fernandez-Prieto D. Monitoring and assessment of wetlands using earth observation: the GlobWetland project. J Environ Manage. 2009;90:2154–69.CrossRefPubMedGoogle Scholar
  16. Laba M, Downs R, Smith S, Welsh S, Neider C, White S, Richmond M, Philpot W, Baveye P. Mapping invasive wetland plans in the Hudson River National Estuary Research Reserve using Quickbird satellite imagery. Remote Sens Environ. 2008;112:286–300.CrossRefGoogle Scholar
  17. Liu K, Li X, Shi X, Wang S. Monitoring mangrove forest changes using remote sensing and GIS data with decision tree learning. Wetlands. 2008;28:336–46.CrossRefGoogle Scholar
  18. Lucas RM, Mitchell A, Donnelly B, Milne AK, Ellison J, Finlaysson M. Use of stereo aerial photography for assessing changes in the extent and height of mangrove canopies in tropical Australia. Wetl Ecol Manag. 2002;10:161–75.CrossRefGoogle Scholar
  19. Lucas RM, Blonda P, Bunting P, Jones G, Inglada J, Aria M, Kosmidou V, Petrou ZI, Manakos I, Adamo M, Charnock R, Tarantino C, Mücher CA, Jongman R, Kramer H, Arvor D, Honrado JP, Mairota P. The earth observation data for habitat monitoring (EODHAM) system. Int J Appl Earth Obs Geoinf. 2014a:17–28.CrossRefGoogle Scholar
  20. Lucas RM, Rebelo L, Fatoyinbo L, Rosenqvist A, Itoh T, Shimada M, Simard M, Souza-Filho PW, Thomas N, Trettin C, Accad A, Carreiras J, Hilarides L. Contribution of L-band SAR to systematic global mangrove monitoring. Freshw Mar Sci. 2014b;65:589–603.CrossRefGoogle Scholar
  21. Magumba D, Maruyama A, Kato A, Takagaki M, Kikuchi M. Spatio-temporal changes in wetlands and identification of Cyperus papyrus on the northern shore of Lake Victoria. Trop Agric Dev. 2014;58:1–7.Google Scholar
  22. Markham BL, Helder DL. Forty-year calibrated record of earth-reflected radiance from Landsat: a review. Remote Sens Environ. 2012;122:30–40.CrossRefGoogle Scholar
  23. Mayaux P, De Grandi GF, Rauste Y, Simard M, Saatchi S. Large scale vegetation maps derived from the combined L-band GRFM and C-band CAMP wide area radar mosaics of Central Africa. Int J Remote Sens. 2002;23:1261–82.CrossRefGoogle Scholar
  24. Melack JM, Hess LL. Remote sensing of the distribution and extent of wetlands in the Amazon Basin. Ecol Stud (Amazonian Floodplain Forests). 2010;210:43–59.Google Scholar
  25. Milne AK, Tapley IJ. Mapping and assessment of wetland ecosystems in north-western Tonle Sap Great Lake with AIRSAR data: results of a pilot study funded jointly by the Mekong River Commision and the University of New South Wales; 2004. p. 129.Google Scholar
  26. Montefalcone M, Rovere A, Parravicini V, Albertelli G, Morri C, Bianchi CN. Evaluating change in seagrass meadows: a time-framed comparison of side scan sonar maps. Aquat Bot. 2013;104:204–12.CrossRefGoogle Scholar
  27. Moser L, Voigt S, Schoepfer E, Palmer S. Multi-temporal wetland monitoring in Sub-Saharan West Africa using medium resolution optical satellite data. IEEE J Sel Top Appl Earth Obs Remote Sens. 2014;99.Google Scholar
  28. Murray NJ, Phinn SR, Clemens SR, Roelfsema CM, Fuller RA. Continental scale mapping of tidal flats across east Asia using the Landsat archive. Remote Sens. 2012;4(11):3417–26.CrossRefGoogle Scholar
  29. Ozesmi SL, Bauer ME. Satellite remote sensing of wetlands. Wetl Ecol Manag. 2002;10:381–402.CrossRefGoogle Scholar
  30. Paganini M, Weise K, Fitoka E, Hansen H, Fernandez–Prieto D, Arino O. The DUE Globwetland-2 project. Proceedings of the 2010 Living Planet Symposium, Bergen, Norway; 2010.Google Scholar
  31. Phinn S, Roelfsema C, Dekker A, Brando V, Anstee J. Mapping seagrass species, cover and biomass in shallow waters: an assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia). Remote Sens Environ. 2008;112:3413–25.CrossRefGoogle Scholar
  32. Potter C, Melack J, Engle D. Modeling methane emissions from Amazon floodplain ecosystems. Wetlands. 2014;34:501–11.CrossRefGoogle Scholar
  33. Richey JE, Wilhelm SR, McClain ME, Victoria RL, Melack JM, Araujo-Limo C. Organic matter and nutrient dynamics in river corridors of the Amazon Basin and their response to anthropogenic change. Geophys Res. 1997;97:3787–804.Google Scholar
  34. Rosenqvist A. Temporal and spatial characteristics of irrigated rice in JERS-1 L-band SAR data. Int J Remote Sens. 1999;20:1567–87.CrossRefGoogle Scholar
  35. Rosenqvist A, Shimada M, Milne AK. The ALOS kyoto and carbon initiative. Geosci Remote Sens Symp. 2007;3614–7.Google Scholar
  36. Salari A, Zakaria M, Nielson CC, Boyce MS. Quantifying tropical wetlands using field surveys, spatial statistics and remote sensing. Wetlands. 2014;34:565–74.CrossRefGoogle Scholar
  37. Shaikh M, Green D, Cross H. A remote sensing approach to determine environmental flows for wetlands of the Lower Darling River, New South Wales, Australia. Int J Remote Sens. 2010;22:1737–51.CrossRefGoogle Scholar
  38. Silva TSF, Costa MPF, Melack JM, Novo EMLM. Remote sensing of aquatic vegetation: theory and applications. Environ Monit Assess. 2008;140:131–45.CrossRefPubMedGoogle Scholar
  39. Simard M, Rivera-Monroy VH, Mancera-Pineda JE, Castaneda-Moya E, Twilley RR. A systematic method for 3d mapping of mangrove forests based on shuttle radar topography mission elevation data, ICESat/GLAS waveforms and field data: application to Cienaga Grande De Santa Marta, Colombia. Remote Sens Environ. 2008;112:2131–44.CrossRefGoogle Scholar
  40. Spalding M, Kainuma M, Collins L. World atlas of mangroves. 2nd ed. London: Earthscan; 2010. p. 336.CrossRefGoogle Scholar
  41. Stumpf RP, Goldschmidt PM. Remote sensing of suspended sediment discharge into the Western Gulf of Maine during the April 1987 100-year flood. J Coast Res. 1992;8:218–25.Google Scholar
  42. Takeuchi W, Tamura M, Yasuoka Y. Estimation of methane emission from West Siberian wetland by scaling technique between NOAA AVHRR and SPOT HRV. Remote Sens Environ. 2003;85(1):21–9.CrossRefGoogle Scholar
  43. Tehrany MS, Pradhan B, Jebuv MN. A comparative assessment between object- and pixel-based classification approaches for land use/land cover mapping using SPOT-5 imagery. Geocarto Int. 2014;29:351–69.CrossRefGoogle Scholar
  44. Thomas N, Lucas RM, Itoh T, Simard M, Fatoyinbo L, Bunting P, Rosenqvist A. An approach to monitoring mangrove extents through time-series comparison of JERS-1 SAR and ALOS PALSAR data. Wetl Ecol Manag. 2015;23(1):3–17.CrossRefGoogle Scholar
  45. Whitcomb J, Moghaddam M, McDonald K, Kellndorfer J, Podest E. Mapping vegetated wetlands of Alaska using L-band radar satellite imagery. Can J Remote Sens. 2014;35:54–72.CrossRefGoogle Scholar
  46. Williams DL, Goward S, Arvidson T. Landsat: yesterday, today and tomorrow. Photogramm Eng Remote Sens. 2006;72(10):1171–8.CrossRefGoogle Scholar
  47. Xiao X, Boles S, Liu J, Shuang D, Frolking S, Li C, Salas W, Moore B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens Environ. 2005;95:480–92.CrossRefGoogle Scholar
  48. Yan Y, Ouyang Z, Guo H, Jin S, Zhao B. Detecting the spatiotemporal changes of tidal flood in the estuarine wetland by using MODIS time series data. J Hydrol. 2010;384(102):156–63.CrossRefGoogle Scholar
  49. Zhang B, Li J, Shen Q, Chen D. A bio-optical model based method of estimating total suspended matter of Lake Taihu (China) from near infrared remote sensing reflectance. Environ Monit Assess. 2008;145:339–47.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Ecosystem Sciences (CES), School of Biological, Earth and Environmental Sciences (BEES)University of New South Wales (UNSW)KensingtonAustralia

Personalised recommendations