Advertisement

Monocotyledons pp 835-847 | Cite as

Bromeliaceae

  • U. EggliEmail author
  • E. J. Gouda
Reference work entry
  • 12 Downloads
Part of the Illustrated Handbook of Succulent Plants book series (SUCCPLANTS)

Abstract

A diagnostic description of the family is given with special emphasis on the occurrence of succulence. This is followed by information on the ordinal placement, a selection of important literature, and information on the geographical distribution. A short discussion of the family’s position in the angiosperm phylogeny is supplemented by a summary of its past and present classification in a phylogenetic context. The succulent features present amongst the species of the family are shortly summarized, as is its general economical importance. Finally, a dichotomous key to the genera with succulent species is given.

References

  1. Aguilar-Rodríguez, P. A. [& al. 2014], Krömer, T. & MacSwiney G. M. C. (2014) The secrets of night-blooming bromeliads and bats. J. Bromeliad Soc. 64(3): 156–165, ills.Google Scholar
  2. Aguirre-Santoro, J. & Michelangeli, F. (2015) Two new species of Disteganthus (Bromeliaceae) from Suriname and French Guiana. Brittonia 67(3): 233–242, ills., map, key.  https://doi.org/10.1007/s12228-015-9378-0.
  3. Baensch, U. (1994) Blühende Bromelien. Flowering Bromeliads. Nassau (BS): Tropic Beauty Publishers.Google Scholar
  4. Barfuss, M. H. J. [& al. 2005], Samuel, R., Till, W. & Stuessy, T. F. (2005) Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) based on DNA sequence data from seven plastid regions. Amer. J. Bot. 92(2): 337–351.  https://doi.org/10.3732/ajb.92.2.337.
  5. Barfuss, M. H. J. [& al. 2016], Till, W., Leme, E. M. C., Pinzón, J. P., Manzanares, J. M., Halbritter, H., Samuel, R. & Brown, G. K. (2016) Taxonomic revision of Bromeliaceae subfam. Tillandsioideae based on a multi-locus DNA sequence phylogeny and morphology. Phytotaxa 279(1): 1–97, ills., key.  https://doi.org/10.11646/phytotaxa.279.1.1.
  6. Bennett, B. (2000) Ethnobotany of Bromeliaceae. In: Benzing, D. H.: Bromeliaceae: Profile of an adaptive radiation; pp. 587–608. Cambridge (GB): Cambridge University Press.  https://doi.org/10.1017/CBO9780511565175.
  7. Benzing, D. H. (2000) Bromeliaceae: Profile of an adaptive radiation. Cambridge (UK): Cambridge University Press.  https://doi.org/10.1017/CBO9780511565175.
  8. Bernardello, L. M. [& al. 1991], Galetto, L. & Juliani, H. R. (1991) Floral nectar, nectary structure and pollinators in some Argentinean Bromeliaceae. Ann. Bot. (Oxford), n.s. 67(4): 401–411.Google Scholar
  9. Böhme, S. (1988) Vergleichende Untersuchungen zu Bau, Lage und systematischer Verwertbarkeit der Septalnektarien von Bromeliaceen. Trop. subtrop. Pfl.-welt 62: 1–154, ills.Google Scholar
  10. Bouchenack-Khelladi, Y. [& al. 2014], Muthama Muasya, A. & Linder, H. P. (2014) A revised evolutionary history of Poales: Origins and diversification. Bot. J. Linn. Soc. 175: 4–16.  https://doi.org/10.1111/boj.12160.
  11. Brown, G. K. (2017) Bromeliad systematics — stepping back to move forward. J. Bromeliad Soc. 66(3): 149–159.Google Scholar
  12. Buchillet, D. (2007) Bibliografia crítica da saúde indígena no Brasil (1844–2006). Quito (EC): Abya-Yala.  https://doi.org/10.13140/2.1.3079.6804.
  13. Butcher, D. (2000) Key to the genera of Bromeliaceae. J. Bromeliad Soc. 50(3): 105–112.Google Scholar
  14. Butcher, D. & Gouda, E. (2014) Most Ananas are cultivars. Newslett. Pineapple Working Group 21: 9–11, ills.Google Scholar
  15. Carvalho-Pinto, C. J. & Oliveira, R. L. (2003) Isoenzymatic analysis of four Anopheles (Kerteszia) bellator Dyar & Knab (Diptera: Culicidae) populations. Mem. Inst. Oswaldo Cruz 98(8): 1045–1048.  https://doi.org/10.1590/S0074-02762004000500002.
  16. Chew, T. [& al. 2010], Luna, E. de & González, D. (2010) Phylogenetic relationships of the pseudobulbous Tillandsia species (Bromeliaceae) inferred from cladistic analyses of ITS 2, 5.8S ribosomal RNA gene, and ETS sequences. Syst. Bot. 35(1): 86–95.  https://doi.org/10.1600/036364410790862632.
  17. Crayn, D. M. [& al. 2004], Winter, K. & Smith, J. A. C. (2004) Multiple origins of Crassulacean Acid Metabolism and the epiphytic habit in the neotropical family Bromeliaceae. Proc. Nation. Acad. Sci. USA 101(10): 3703–3708.  https://doi.org/10.1073/pnas.0400366101.
  18. Crayn, D. M. [& al. 2015], Winter, K., Schulte, K. & Smith, J. A. C. (2015) Photosynthetic pathways in Bromeliaceae: Phylogenetic and ecological significance for CAM and C3 based on carbon isotope ratios for 1893 species. Bot. J. Linn. Soc. 178: 169–221.  https://doi.org/10.1111/boj.12275.
  19. Downs, W. G. & Pittendrigh, C. S. (1946) Bromeliad malaria in Trinidad, British West Indies. Amer. J. Trop. Med. 26: 47–66.  https://doi.org/10.1186/1475-2875-9-115.
  20. Eggli, U. & Nyffeler, R. (2009) Living under temporarily arid conditions — succulence as an adaptive strategy. Bradleya 27: 13–36, ills.  https://doi.org/10.5167/uzh-28825.
  21. Evans, T. M. [& al. 2015], Jabaily, R. S., Gelli de Faria, A. P., Oliveira F. de Sousa, L. de, Wendt, T. & Brown, G. K. (2015) Phylogenetic relationships in Bromeliaceae subfamily Bromelioideae based on chloroplast DNA sequence data. Syst. Bot. 40(1): 116–128.  https://doi.org/10.1600/036364415X686413.
  22. Fagundes, N. F. & Mariath, J. E. D. (2010) Morphoanatomy and ontogeny of fruit in Bromeliaceae species. Acta Bot. Brasil. 24(3): 765–779, ills.  https://doi.org/10.1590/S0102-33062010000300020.
  23. Flores, E. M. (1975) Some aspects of comparative foliar anatomy of two species of Bromeliaceae, Aechmea mexicana Baker and Hechtia glomerata Zucc. Revista Biol. Trop. 23(1): 29–52.Google Scholar
  24. Freschi, L. [& al. 2010], Takahashi, C. A., Cambui, C. A., Semprebom, T. R., Cruz, A. B., Mioto, P. T., Versieux, L. M., Calvente, A., Latansio-Aidar, S. R., Aidar, M. P. M. & Mercier, H. (2010) Specific leaf areas of the tank bromeliad Guzmania monostachia perform distinct functions in response to water shortage. J. Pl. Physiol. 167(7): 526–533.  https://doi.org/10.1016/j.jplph.2009.10.011.
  25. Gadelha, P. (1994) From “forest malaria” to “bromeliad malaria”: A case-study of scientific controversy and malaria control. Parassitologia 36(1–2): 175–195.Google Scholar
  26. Gitaí, J. [& al. 2014], Paule, J., Zizka, G., Schulte, K. & Benko-Iseppon, A. M. (2014) Chromosome numbers and DNA content in Bromeliaceae: Additional data and a critical review. Bot. J. Linn. Soc. 176(3): 349–368, ills.  https://doi.org/10.1111/boj.12211.
  27. Givnish, T. J. [& al. 2007], Millan, K. C., Berry, P. E. & Sytsma, K. J. (2007) Phylogeny, adaptive radiation, and historical biogeography of Bromeliaceae inferred from ndhF sequence data. In: Columbus, J. T. & al. (eds.): Monocots. Comparative biology and evolution: Poales. Aliso 23: 3–26.  https://doi.org/10.5642/aliso.20072301.04
  28. Givnish, T. J. [& al. 2011], Barfuss, M. H. J., Ee, B. van, Riina, R., Schulte, K., Horres, R., Gonsiska, P. A., Jabaily, R. S., Crayn, D. M., Smith, J. A. C., Winter, K., Brown, G. K., Evans, T. M., Holst, B. K., Luther, H., Till, W., Zizka, G., Berry, P. E. & Sytsma, K. J. (2011) Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: Insights from an eight-locus plastid phylogeny. Amer. J. Bot. 98(5): 872–895, ills., maps.  https://doi.org/10.3732/ajb.1000059.
  29. Givnish, T. J. [& al. 2014], Barfuss, M. H. J., Ee, B. van, Riina, R., Schulte, K., Horres, R., Gonsiska, P. A., Jabaily, R. S., Crayn, D. M., Smith, J. A. C., Winter, K., Brown, G. K., Evans, T. M., Holst, B. K., Luther, H., Till, W., Zizka, G., Berry, P. E. & Sytsma, K. J. (2014) Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Molec. Phylogen. Evol. 71: 55–78.  https://doi.org/10.1016/j.ympev.2013.10.010.
  30. Gomes-da-Silva, J. [& al. 2012], Alves da Costa Vargens, F., Carmo de Oliveira Arruda, R. de & Ferreira da Costa, A. (2012) A morphological cladistic analysis of the Vriesea corcovadensis group (Bromeliaceae: Tillandsioideae), with anatomical descriptions: New evidence of the non-monophyly of the genus. Syst. Bot. 37(3): 641–654, ills.  https://doi.org/10.1600/036364412X648599.
  31. Gouda, E. J. & Butcher, D. (2016+) A list of accepted Bromeliaceae names. Utrecht (NL): University Botanic Gardens, Utrecht; continuously updated. http://bromeliad.nl/bromnames.
  32. Gouda, E. J. [& al. 2012+], Butcher, D. & Gouda, C. S. (2012+) Encyclopaedia of Bromeliads, Version 3.1 (2012). Utrecht (NL): University Botanic Gardens, Utrecht. http://bromeliad.nl/encyclopedia/.
  33. Gouda, E.J., Butcher, D. & Gouda, C.S. (cont.updated) Encyclopaedia of Bromeliads, Version 4. http://bromeliad.nl/encyclopedia/ University Botanic Gardens, Utrecht (accessed: Jan. 2019).
  34. Horres, R. & Zizka, G. (1995) Untersuchungen zur Blattsukkulenz bei Bromeliaceae. Beitr. Biol. Pfl. 69(1): 43–76, ills.Google Scholar
  35. Horres, R. [& al. 2007], Schulte, K., Weising, K. & Zizka, G. (2007) Systematics of Bromelioideae (Bromeliaceae) — evidence from molecular and anatomical studies. In: Columbus, J. T. & al. (eds.): Monocots. Comparative biology and evolution: Poales. Aliso 23(1): 27–43, ills.  https://doi.org/10.5642/aliso.20072301.05
  36. Krahl, A. H. [& al. 2013], Holanda, A. S. S., Krahl, D. R. P., Corrêa, M. M., Oliveira, R. L. C. & Valsko, J. J. (2013) Anatomia foliar de Ananas lucidus Mill. (Bromeliaceae). Natureza on line 11(4): 161–165, ills.Google Scholar
  37. Loeschen, V. S. [& al. 1993], Martin, C. E., Smith, M. & Eder, S. L. (1993) Leaf anatomy and CO2 recycling during Crassulacean Acid Metabolism in twelve epiphytic species of Tillandsia (Bromeliaceae). Int. J. Pl. Sci. 154: 100–106. http://www.jstor.org/stable/2995609.
  38. Males, J. (2016) Think tank: Water relations of Bromeliaceae in their evolutionary context. Bot. J. Linn. Soc. 181(3): 415–440, ills.  https://doi.org/10.1111/boj.12423.
  39. Males, J. & Griffiths, H. (2017) Functional types in Bromeliaceae: Relationships with drought-resistance traits and bioclimatic distributions. Funct. Ecol. 31(10): 1868–1880, ills.  https://doi.org/10.1111/1365-2435.12900.
  40. Mantovani, A. [& al. 2012], Lima da Venda, A. K., Rezende Almeida, V., Ferreira da Costa, A. & Forzza, R. C. (2012) Leaf anatomy of Quesnelia (Bromeliaceae): Implications for the systematics of core bromelioids. Pl. Syst. Evol. 298: 787–800.  https://doi.org/10.1007/s00606-012-0590-z.
  41. Marques, G. R. A. M. & Paulo Forattini, O. (2009) Encontro de imaturos de Anopheles cruzii em bromélias de área urbana, litoral de São Paulo. Anopheles cruzii larvae found in bromelias in an urban area on the Brazilian coast. Revista Saúde Públ. 43(2): 369–372.  https://doi.org/10.1590/S0034-89102009005000006.
  42. Matiz, A. [& al. 2013], Mioto, P. T., Yepes Mayorga, A., Freschi, L. & Mercier, H. (2013) CAM photosynthesis in Bromeliads and Agaves: What can we learn from these plants? In: Dubinsky, Z. (ed.): Photosynthesis; pp. 91–134. Rijeka (HR): InTech.  https://doi.org/10.5772/56219.
  43. Meisner, K. & Zotz, G. (2012) Heteroblasty in bromeliads: Its frequency in a local flora and the timing of the transition from atmospheric to tank form in the field. Int. J. Pl. Sci. 173(7): 780–788.  https://doi.org/10.1086/666665.
  44. Meisner, K. [& al. 2013], Winkler, U. & Zotz, G. (2013) Heteroblasty in bromeliads — Anatomical, morphological and physiological changes in ontogeny are not related to the change from atmospheric to tank form. Funct. Pl. Biol. 40(3): 251–262.  https://doi.org/10.1071/FP12201.
  45. Metzler, W. (1924) Beiträge zur vergleichenden Anatomie blattsukkulenter Pflanzen. Bot. Arch. 6(1–3): 50–83, ills.Google Scholar
  46. Mocellin, M. G. [& al. 2009], Simões, T. S., Fernandes S. T., França T. M. L., Lounibos, L. P. & Lourenço de O., R. (2009) Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus? Mem. Inst. Oswaldo Cruz 104(8): 1171–1176.  https://doi.org/10.1590/S0074-02762009000800015.
  47. Monteiro, R. F. [& al. 2011], Forzza, R. C. & Mantovani, A. (2011) Leaf structure of Bromelia and its significance for the evolution of Bromelioideae (Bromeliaceae). Pl. Syst. Evol. 293(1–4): 53–64, ills.  https://doi.org/10.1007/s00606-011-0426-2.
  48. Oliva-Esteve, F. & Steyermark, J. (1987) Bromeliaceaes [sic!] of Venezuela. Caracas (VE): Armitano Editores.Google Scholar
  49. Palací, C. A. [& al. 2004], Brown, G. K. & Tuthill, D. E. (2004) Vegetative morphology and leaf anatomy of Catopsis (Tillandsioideae: Bromeliaceae). Selbyana 25(1): 138–150, ills.Google Scholar
  50. Palma-Silva, C. [& al. 2016], Leal, B. S. S., Chaves, C. J. N. & Fay, M. F. (2016) Advances in and perspectives on evolution in Bromeliaceae. Bot. J. Linn. Soc. 181(3): 305–322.  https://doi.org/10.1111/boj.12431.
  51. Papini, A. [& al. 2010], Tani, G., Falco, P. di & Brighigna, L. (2010) The ultrastructure of the development of Tillandsia (Bromeliaceae) trichome. Flora (Jena) 205(2): 94–100.  https://doi.org/10.1016/j.flora.2009.02.001.
  52. Pereira, T. A. R. [& al. 2011], Oliveira, T. S. de, Silva, L. C. da & Azevedo, A. A. (2011) Comparative leaf anatomy of four species of Bromelioideae (Bromeliaceae) occurring in the Atlantic Forest, Brazil. Botany 89(4): 243–253, ills.  https://doi.org/10.1139/B11-011.
  53. Pierce, S. (2007) The jeweled armor of Tillandsia — multifaceted or elongated trichomes provide photoprotection. In: Columbus, J. T. & al. (eds.): Monocots. Comparative biology and evolution: Poales. Aliso 23: 44–52, ills.  https://doi.org/10.5642/aliso.20072301.06.
  54. Pierce, S. [& al. 2001], Maxwell, K., Griffiths, H. & Winter, K. (2001) Hydrophobic trichome layers and epicuticular wax powders in Bromeliaceae. Amer. J. Bot. 88(8): 1371–1389. http://www.amjbot.org/content/88/8/1371.abstract.
  55. Pittendrigh, C. S. (1948) The bromeliad — Anopheles-malaria complex in Trinidad. I. The bromeliad flora. Evolution 2: 58–89. http://www.jstor.org/stable/2405616.
  56. Quezada, I. M. & Gianoli, E. (2011) Crassulacean Acid Metabolism photosynthesis in Bromeliaceae: An evolutionary key innovation. Biol. J. Linn. Soc. 104(2): 480–486.  https://doi.org/10.1111/j.1095-8312.2011.01713.x.
  57. Rauh, W. (1990) Bromelien. Ed. 3. Stuttgart (DE): Verlag Eugen Ulmer.Google Scholar
  58. Reinert, F. & Meirelles, S. T. (1993) Water acquisition strategy shifts in the heterophyllous saxicolous bromeliad, Vriesea geniculata (Wawra) Wawra. Selbyana 14: 80–88, ills. http://www.jstor.org/stable/41760421.
  59. Reitz, R. (1983) Bromeliáceas e a malária-bromélia endémica. In: Reitz, R. (ed.): Flora ilustrada catarinense, I parte as plantas, fascículo BROM. Itajaí (BR): Herbario “Barbosa Rodrigues”.Google Scholar
  60. Reyes-García, C. & Griffiths, H. (2009) Ecophysiological studies of perennials of the Bromeliaceae family in a dry forest: Strategies for survival. In: Barrera, E. de la & Smith, W. K. (eds.): Perspectives in biophysical plant ecophysiology. A tribute to Park S. Nobel; pp. 121–151. México (MX): Universidad Nacional Autónoma de México.Google Scholar
  61. Robinson, H. (1969) A monograph of foliar anatomy of the genera Connellia, Cottendorfia, and Navia (Bromeliaceae). Smithsonian Contr. Bot. 2: 1–41, ills. http://hdl.handle.net/10088/7011.
  62. Rodrigues Pereira, T. A. [& al. 2013], Campos da Silva, L., Alves Azevedo, A., Francino, D. M. T., Santos Coser, T. dos & Dias Pereira, J. (2013) Leaf morpho-anatomical variations in Billbergia elegans and Neoregelia mucugensis (Bromeliaceae) exposed to low and high solar radiation. Botany 91(6): 327–334, ills.  https://doi.org/10.1139/cjb-2012-0276.
  63. Roguenant, A. [& al. 2016], Lecoufle, M. & Raynal-Roques, A. (2016) Les Broméliacées. Approche panoramique d’une grand famille “américaine”. Paris (FR): Belin.Google Scholar
  64. Santos-Silva, F. [& al. 2013], Saraiva, D. P., Monteiro, R. F., Pita, P., Mantovani, A. & Forzza, R. C. (2013) Invasion of the South American dry diagonal: What can the leaf anatomy of Pitcairnioideae (Bromeliaceae) tell us about it? Flora (Jena) 208(8–9): 508–521, ills., maps.  https://doi.org/10.1016/j.flora.2013.08.003.
  65. Santos-Silva, F. [& al. 2015], Antunes Mastroberti, A. & Araujo Mariath, E. de (2015) Capsule structure in three species of Dyckia (Bromeliaceae): Ontogenetic and taxonomic issues. J. Torrey Bot. Soc. 142(3): 249–257, ills.  https://doi.org/10.3159/TORREY-D-14-00002.1.
  66. Saraiva, D. P. [& al. 2015], Mantovani, A. & Forzza, R. C. (2015) Insights into the evolution of Pitcairnia (PitcairnioideaeBromeliaceae), based on morphological evidence. Syst. Bot. 40(3): 726–736, ills.  https://doi.org/10.1600/036364415X689186.
  67. Scharf, U. & Gouda, E. J. (2008) Bringing Bromeliaceae back to homeland botany. J. Bromeliad Soc. 58(3): 123–129, ills.Google Scholar
  68. Schulte, K. & Zizka, G. (2008) Multi locus plastid phylogeny of Bromelioideae (Bromeliaceae) and the taxonomic utility of petal appendages and pollen characters. Candollea 63(2): 209–225. http://www.ville-ge.ch/cjb/publications_candollea_632.php.
  69. Schütz, N. [& al. 2016], Krapp, F., Wagner, N. & Weising, K. (2016) Phylogenetics of Pitcairnioideae s.s. (Bromeliaceae): Evidence from nuclear and plastid DNA sequence data. Bot. J. Linn. Soc. 181(3): 323–342, maps, ills.  https://doi.org/10.1111/boj.12403.
  70. Silvera, K. [& al. 2010], Neubig, K. M., Whitten, W. M., Williams, N. H., Winter, K. & Cushman, J. C. (2010) Evolution along the Crassulacean Acid Metabolism continuum. Funct. Pl. Biol. 37(11): 995–1010.  https://doi.org/10.1071/FP10084.
  71. Silvestro, D. [& al. 2014], Zizka, G. & Schulte, K. (2014) Disentangling the effects of key innovations on the diversification of Bromelioideae (Bromeliaceae). Evolution 68(1): 163–175.  https://doi.org/10.1111/evo.12236.
  72. Smith, E. L. (1983) Bigeneric hybrids — A listing. J. Bromeliad Soc. 33(2): 69–75. http://journal.bsi.org/V33/2/.
  73. Smith, L. B. & Downs, R. J. (1974) Flora Neotropica. Monograph No. 14 [Bromeliaceae]. Part 1: Pitcairnioideae. New York (US): Hafner Press & New York Botanical Garden. http://www.jstor.org/stable/4393694.
  74. Smith, L. B. & Downs, R. J. (1977) Flora Neotropica. Monograph No. 14 [Bromeliaceae]. Part 2: Tillandsioideae. New York (US): Hafner Press & New York Botanical Garden. http://www.jstor.org/stable/i399938.
  75. Smith, L. B. & Downs, R. J. (1979) Flora Neotropica. Monograph No. 14 [Bromeliaceae]. Part 3: Bromelioideae. New York (US): Hafner Press & New York Botanical Garden. http://www.jstor.org/stable/i399940.
  76. Smith, L. B. & Till, W. (1998) Bromeliaceae. In: Kubitzki, K. (ed.): The families and genera of vascular plants; 4: 75–99, ills., key. Berlin (DE) etc.: Springer-Verlag.  https://doi.org/10.1007/978-3-662-03531-3_8.
  77. Stevens, P. F. (2001+) Angiosperm Phylogeny Website, Version 12, July 2012 [and more or less continuously updated since]. St. Louis (US): Missouri Botanical Garden. http://www.mobot.org/MOBOT/research/APweb/
  78. Versieux, L. M. & Medeiros, A. S. M. (2018) Leaf anatomical characterization of Guzmania Ruiz & Pav., and Mezobromelia L. B. Sm. (Tillandsioideae, Bromeliaceae). J. Bromeliad Soc. 67(1): 8–26, ills.Google Scholar
  79. Versieux, L. M. [& al. 2010], Elbl, P. M., Wanderley, M. G. L. & Menezes, N. L. de (2010) Alcantarea (Bromeliaceae) leaf anatomy characterization and its systematic implications. Nordic J. Bot. 28(4): 385–397.  https://doi.org/10.1111/j.1756-1051.2010.00727.x.
  80. Versieux, L. M. [& al. 2012], Barbará, T., Wanderley, M. G. L., Calvente, A., Fay, M. F. & Lexer, C. (2012) Molecular phylogenetics of the Brazilian giant bromeliads (Alcantarea, Bromeliaceae): Implications for morphological evolution and biogeography. Molec. Phylogen. Evol. 64: 177–189, ills.  https://doi.org/10.1016/j.ympev.2012.03.015.
  81. Vieira da Silva, I. [& al. 2011], Oliveria, D. M. de & Scatena, V. L. (2011) Anatomia foliar de Ananas ananassoides (Baker) L. B. Sm., Vriesea bituminosa Wawra e Guzmania lingulata (L.) Mez (Bromeliaceae) do Parque Estadual Cristalino, Alta Floresta - MT, Brasil. Revista Ci. Agro-Ambient., Alta Floresta 9(1): 83–95, ills.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Sukkulenten-Sammlung ZürichGrün Stadt ZürichZürichSwitzerland
  2. 2.Curator University Botanic GardensUtrechtThe Netherlands

Personalised recommendations