Fluidized Bed Process with Silane

Reference work entry


Silane-based fluidized-bed technology is used to produce polysilicon for solar cells by decomposing silane onto silicon particles suspended in a heated stream of silane and hydrogen. Silane-based fluidized-bed reactors potentially provide a lower cost method to produce polysilicon than the current Siemens reactors that dominate the silicon market. Production of silicon in a fluidized bed requires 80–90% less electrical energy than the currently favored Siemens process and converts a batch process into a more economical continuous process. The spherical granular silicon product from fluidized-bed reactors is preferred to the polysilicon rods produced by the Siemens process for downstream processing. Production of silicon by fluidized beds has been carried on for over 20 years, but the simpler Siemens process has dominated polysilicon production because of the high purity of its polysilicon product and the availability of low-cost electricity. The economics of the silane-based fluidized-bed technology has improved significantly due to advances in reactor design, process modeling, and operational experience. Fluidized-bed technology is the leading candidate to eventually provide less expensive polysilicon for solar cells.


Silicon fluidized-bed Silicon production with silane Silane-based fluidized-bed Fluidized bed and Siemens silicon FBR polysilicon Granular silicon 


  1. R.H. Allen, U.S. Patent 4,748,052, 1988Google Scholar
  2. J. Baeyens, D. Geldart, Chem. Eng. Sci. 29, 255–265 (1974)CrossRefGoogle Scholar
  3. S. Balaji, J. Du, C.M. White, E. Ydstie, Powder Technol. 199, 23 (2010)CrossRefGoogle Scholar
  4. J. Bernreuter, FBR Polysilicon Technology – Promise or Hype? (PV-Tech, 2014.) Accessed 2 March 2017
  5. L. Bertrand, C.M Olsen, U.S. Patent 3,012,862, 1961Google Scholar
  6. S. Bhusarapu, P. Gupta, Y. Huang, U.S. Patents 9,114,996, 2015 and 9,114,997, 2015Google Scholar
  7. W.C. Breneman, U.S. Patent 4,676,967, 1987Google Scholar
  8. W.C. Breneman, U.S. Patent 9,352,971, 2016Google Scholar
  9. L. Cadoret, N. Reuge, S. Pannala, M. Syamlal, C. Coufort, B. Caussat, Surf. Coat. Technol. 201, 8919 (2007)CrossRefGoogle Scholar
  10. B. Caussat, M. Hemati, J.P. Couderc, Chem. Eng. Sci. 50, 3625 (1995)CrossRefGoogle Scholar
  11. D.W. Clary, A.O. Wikman, U.S. Patent 5,260,538, 1993Google Scholar
  12. W.O. Filtvedt, Production of Polysilicon from Silane Pyrolysis in a Fluidized bed, thesis, Telemark University College, 2013. Available from
  13. W.O. Filtvedt, M. Javidi, A. Holt, M.C. Melaaen, E. Marstein, H. Tathgar, P.A. Ramachandran, Sol. Energy Mater. Sol. Cells 94, 1890 (2010)CrossRefGoogle Scholar
  14. W.O. Filtvedt, A. Holt, P.A. Ramachandran, M.C. Melaaen, Sol. Energy Mater. Sol. Cells 107, 188 (2012)CrossRefGoogle Scholar
  15. W.O. Filtvedt, T. Mongstad, A. Holt, M. Melaaen, H. Klette, Int. J. Chem. React. Eng. 11(1) (2013)Google Scholar
  16. R. Fu, T.L. James, M. Woodhouse, IEEE J Photovoltaics 5, 515 (2015)CrossRefGoogle Scholar
  17. M.F Gautreaux, R.H. Allen, U.S. Patent 4,784,840, 1988Google Scholar
  18. D. Geldart, Characterization of fluidized powders, in Gas Fluidization Technology, ed. by D. Geldart (Wiley, Chichester, 1986)Google Scholar
  19. H. Gutschel, U.S. Patent 3,042,494, 1962Google Scholar
  20. A.V. Hariharan, M. Chandra, K.P. Gupta, U.S. Patent 7,175,685, 2007Google Scholar
  21. J.R. Howard, Fluidized Bed Technology: Principles and Applications (Adam Hilger, Bristol/New York, 1989), p. 30, p. 202Google Scholar
  22. G. Hsu, R. Hogle, N. Rohtagi, A. Morrison, J. Electrochem. Soc. 131, 660 (1984)CrossRefGoogle Scholar
  23. G. Hsu, N. Rohatgi, J. Houseman, AICHE J. 33(5), 784 (1987)CrossRefGoogle Scholar
  24. N.W. Hwang, J. Cryst. Growth 205, 59 (1999)CrossRefGoogle Scholar
  25. IHS, Technology: Fluidized Bed Reactor Technology Stakes its claim in solar Polysilicon Manufacturing., 2014
  26. S.K. Iya, U.S. Patent 4,684,513, 1987Google Scholar
  27. S.K. Iya, U.S. Patent 4,818,496, 1989Google Scholar
  28. L. Jianlong, C. Guanghui, Z. Pan, W. Weiwen, D. Jihai, Chin. J. Chem. Eng. 19, 747 (2011)CrossRefGoogle Scholar
  29. D.K. Kerner, R.W. Davis, E.F. Moore, S.H. Ehrman, J. Cryst. Growth 247, 333 (2003)CrossRefGoogle Scholar
  30. H.Y. Kim, K.K. Yoon, Y.K. Park, W.C. Choi, U.S. Patent 7,771,687, 2010Google Scholar
  31. T. Kimura, T. Kojima, Journal de Physique IV Colloque, 1991, 02 (C2), pp. C2-103–C2-110Google Scholar
  32. M.S. Kulkarni, P. Gupta, B. Devulapalli, J. Ibrahim, V. Revankar, K. Foli, U.S. Patent 8,404,206, 2013Google Scholar
  33. D. Kunii, O. Levenspiel, Fluidization Engineering, 2nd edn. (Butterworth-Heinemann, Newton, 1991), p. 35, p. 52, and p. 78Google Scholar
  34. S. Lai, M.P. Dudukovic, P.A. Ramachandran, Chem. Eng. Sci. 41, 633 (1986)CrossRefGoogle Scholar
  35. D. R. Lide (ed.), CRC Handbook of Chemistry and Physics, 89th edn. (CRC Press, Boca Raton, 2008), pp. 12–217Google Scholar
  36. B. Mazumder, Silicon and Its Compounds (Science Publishers, Plymouth, 2000), p. 7Google Scholar
  37. R.I Newman, W.E. Watson, U.S. Patent 3,370,938, 1968Google Scholar
  38. E.W. Osborne, M.V Spangler, L.C. Allen, R.J Geertsen, P.E. Ege, W.J. Stupin, G. Zeininger, U.S. Patent 8,075,692, 2011Google Scholar
  39. S. Pannala, M. Syamlal, T. O’brien, Computational Gas-Solid Flows and Reacting Systems (Engineering Science Reference, Hersey, New York, 2010)Google Scholar
  40. J.M. Parker, Int. J. Chem. React. Eng. 9(A40) (2011)Google Scholar
  41. J. Pina, V. Bacala, N.S. Schbib, P. Ege, H. Ignacio, I. Lasa, Int. J. Chem. React. Eng. 4, A9 (2006)Google Scholar
  42. N. Reuge, L. Cadoret, B. Caussat, Chem. Eng. J. 148, 509 (2009)CrossRefGoogle Scholar
  43. V. Revankar, S. Lohoti, U.S. Patent 8,657,958, 2014Google Scholar
  44. F.L. Riley, J. Am. Ceram. Soc. 83, 245 (2000)CrossRefGoogle Scholar
  45. C. Roselund, The slow grind of FBR polysilicon, (pv magazine, 2015). www.http:/ Accessed 2 Mar 2017
  46. SEMI,, (see methods SEMI PV49-0613 2013 and SEMI PV 17–1012, 2012)
  47. M.V. Spangler, M.J. Miller, U.S. Patent 9,404,177, 2016Google Scholar
  48. M.V Spangler, Glen Stucki, U.S. Patent 8,926,929, 2015Google Scholar
  49. R. Steemann, J. Yong, O. Mjos, A. Song, Energy Procedia 15, 20 (2012)CrossRefGoogle Scholar
  50. R.D. Toomy, Chem. Eng. Process. 48, 220 (1952)Google Scholar
  51. S.P. Walch, C.E. Dateo, J. Phys. Chem. 105, 2015 (2001)CrossRefGoogle Scholar
  52. D. Weidhaus, I. Crossmann, F. Schreieder, U.S. Patent Application 2005/0135986, 2005Google Scholar
  53. G.M. Wyller, T.J. Preston, H. Klette, O. Nordseth, T.T. Mongstad, W.O. Filtvedt, E.S. Marstein, Energy Procedia 92, 904 (2016)CrossRefGoogle Scholar
  54. Yang (ed.), Handbook of Fluidization and Fluid-Particle Systems (CRC Press/Taylor & Francis Group, Boca Raton, 2003), p. 261Google Scholar
  55. G. Zhang, F. Quyang, Ind. Eng. Chem. Process. Des. Dev. 24, 430 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.GCL Solar Energy Trading LimitedSuzhouHong Kong
  2. 2.GCL Technology Research Center, LLCPrincetonUSA
  3. 3.Jiangsu Zhongneng Polysilicon Technology Development Co., Ltd., (GCL)XuzhouP. R. China

Section editors and affiliations

  • Yuepeng Wan
    • 1
  1. 1.GCL-POLY Energy Holdings LimitedXuzhou Economic Development ZoneChina

Personalised recommendations