Nanocrystalline Silicon-Based Multilayers and Solar Cells

Reference work entry


Nanocrsytalline Silicon (nc-Si) is a promising material to develop the next generation of solar cells since it can efficiently absorb the incident solar light in a wide spectral range via the size modulation. The idea of all Si-based tandem type solar cells containing the sub-cells with various bandgaps motivates the extensive studies on the synthesis, physical properties, as well as the device applications of nc-Si material. Currently, the fabrication of size-controllable nc-Si is one of the challenging issues and the utilization of nc-Si in actual photovoltaic device is still at the stage of exploration. In this chapter, we describe the preparation of size-controllable nc-Si dots in multilayer by using thermally annealing or laser crystallization technique to crystallize amorphous Si/SiO2 or amorphous Si/SiC stacked structures. It is shown that the dot size can be well confined with the initial amorphous Si layer thickness and the size-dependent properties are observed. The chapter focuses on the utilization of prepared nc-Si-based multilayers in prototype hetero-junction solar cells. The photovoltaic properties with different dot size, surrounding insulator materials, as well as the novel grade-sized structures are present. Furthermore, the efforts to improve the device performance by combining light trapping structures with nc-Si-based multilayers are introduced.


Size-controllable nanocrsytalline silicon (nc-Si) Si/SiC multilayers Solar cell Size-dependent photovoltaic properties Graded-sized nc-Si All-nc-Si-based solar cell Light trapping effect Si nanowires (Si NWs) 


  1. Y.Q. Cao, P. Lu, X.W. Zhang, Enhanced photovoltaic property by forming p-i-n structures containing Si quantum dots/SiC multilayers. Nanoscale Res. Lett. 9, 634 (2014)CrossRefGoogle Scholar
  2. Y.Q. Cao, J. Xu, Z.Y. Ge, Enhanced broadband spectral response and energy conversion efficiency for hetero-junction solar cells with graded-sized Si quantum dots/SiC multilayers. J. Mater. Chem. C 3, 12061 (2015)CrossRefGoogle Scholar
  3. Y.Q. Cao, Z.Y. Ge, X.F. Jiang, Light harvesting and enhanced performance of Si quantum dot/Si nanowire heterojunction solar cells. Part. Part. Syst. Charact. 33, 38 (2016)CrossRefGoogle Scholar
  4. G.R. Chang, F. Ma, D.Y. Ma, Growth and characterization of ceria thin films and Ce-doped γ-Al2O3 nanowires using sol-gel techniques. Nanotechnology 21, 465606 (2010)CrossRefGoogle Scholar
  5. K.J. Chen, X.F. Huang, J. Xu, Visible photoluminescence in crystallized amorphous Si:H/SiNx:H multiquantum - well structures. Appl. Phys. Lett. 61, 2069 (1992)CrossRefGoogle Scholar
  6. G.R. Chen, J. Xu, W. Xu, Dynamical process of KrF pulsed excimer laser crystallization of ultrathin amorphous silicon films to form Si nano-dots. J. Appl. Phys. 111, 094320 (2012)CrossRefGoogle Scholar
  7. Q.J. Cheng, E. Tam, S.Y. Xu, Si quantum dots embedded in an amorphous SiC matrix: nanophase control by non-equilibrium plasma hydrogenation. Nanoscale 2, 594 (2010)CrossRefGoogle Scholar
  8. E.C. Cho, S. Park, X.J. Hao, Silicon quantum dot/crystalline silicon solar cells. Nanotechnology 19, 245201 (2008)CrossRefGoogle Scholar
  9. G. Conibeer, M. Green, R. Corkish, Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511, 654 (2006)CrossRefGoogle Scholar
  10. M. Hirasawa, T. Orii, T. Seto, Size-dependent crystallization of Si nanoparticles. Appl. Phys. Lett. 88, 093119 (2006)CrossRefGoogle Scholar
  11. L. Hu, G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249 (2007)CrossRefGoogle Scholar
  12. C.W. Jiang, M.A. Green, Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J. Appl. Phys. 99, 114902 (2006)CrossRefGoogle Scholar
  13. H. Jin, G.L. Liu, Fabrication and optical characterization of light trapping silicon nanopore and nanoscrew devices. Nanotechnology 23, 125202 (2012)CrossRefGoogle Scholar
  14. Y. Kanemitsu, N. Shimizu, T. Komoda, Photoluminescent spectrum and dynamics of Si+-ion-implanted and thermally annealed SiO2 glasses. Phys. Rev. B 54, 14329 (1996)CrossRefGoogle Scholar
  15. T.W. Kim, C.H. Cho, B.H. Kim, Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3. Appl. Phys. Lett. 88, 123102 (2006)CrossRefGoogle Scholar
  16. Y. Kurokawa, S. Miyajima, A. Yamada, Preparation of nanocrystalline silicon in amorphous silicon carbide matrix. Jpn. J. Appl. Phys. 45, L1064 (2006)CrossRefGoogle Scholar
  17. Y. Kurokawa, S. Tomita, S. Miyajima, Photoluminescence from silicon quantum dots in Si quantum dots/amorphous SiC superlattice. Jpn. J. Appl. Phys. 46, L833 (2007)CrossRefGoogle Scholar
  18. Y. Kurokawa, S. Yamada, S. Miyajima, Effects of oxygen addition on electrical properties of silicon quantum dots/amorphous silicon carbide superlattice. Curr. Appl. Phys. 10, S435 (2010)CrossRefGoogle Scholar
  19. L.X. Li, J. Heitmann, M. Schmidt, Si rings, Si clusters, and Si nanocrystals-different states of ultrathin SiOx layers. Appl. Phys. Lett. 81, 4248 (2002)CrossRefGoogle Scholar
  20. H.F. Li, R. Jia, C. Chen, Influence of nanowires length on performance of crystalline silicon solar cell. Appl. Phys. Lett. 98, 151116 (2011)CrossRefGoogle Scholar
  21. S.X. Li, Y.J. Rui, Y.Q. Cao, Annealing effect on optical and electronic properties of silicon rich amorphous silicon-carbide films. Front. Optoelectron. 5(1), 107 (2012)CrossRefGoogle Scholar
  22. P. Löper, D. Stüwe, M. Künle, A Membrane Device for Substrate - Free Photovoltaic Characterization of Quantum Dot Based p -i - n Solar Cells. Adv. Mater. 24, 3124 (2012)CrossRefGoogle Scholar
  23. P. Löper, M. Canino, D. Qazzazie, Silicon nanocrystals embedded in silicon carbide: investigation of charge carrier transport and recombination. Appl. Phys. Lett. 102, 033507 (2013)CrossRefGoogle Scholar
  24. P. Lu, J. Xu, Y.Q. Cao, Preparation of nano-patterned Si structures for hetero-junction solar cells. Appl. Surf. Sci. 334, 123 (2015)CrossRefGoogle Scholar
  25. A. Martínez, S. Hernández, P. Pellegrino, Comparative study of the nonlinear optical properties of Si nanocrystals fabricated by e - beam evaporation, PECVD or LPCVD. Phys. Status Solidi C 8, 969 (2011)CrossRefGoogle Scholar
  26. F. Meillaud, A. Shah, C. Droz, Efficiency limits for single-junction and tandem solar cells. Sol. Energy Mater. Sol. Cells 90, 2952 (2006)CrossRefGoogle Scholar
  27. S. Miyazaki, K. Makihara, M. Ikeda, Control of electronic charged states of Si-based quantum dots for floating gate application. Thin Solid Films 517, 41 (2008)CrossRefGoogle Scholar
  28. Y.H. Pai, G.R. Lin, Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane. Opt. Express 19, 896 (2011)CrossRefGoogle Scholar
  29. N.M. Park, C.J. Choi, T.Y. Seong, Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. Phys. Rev. Lett. 86, 1355 (2001)CrossRefGoogle Scholar
  30. S. Park, E.C. Cho, D.Y. Song, n-Type silicon quantum dots and p-type crystalline silicon heteroface solar cells. Sol. Energy Mater. Sol. Cells 93, 684 (2009)CrossRefGoogle Scholar
  31. L. Pavesi, L. Dal Negro, C. Mazzoleni, Optical gain in silicon nanocrystals. Nature 408, 440 (2000)CrossRefGoogle Scholar
  32. I. Perez-Wurfl, L. Ma, D. Lin, Silicon nanocrystals in an oxide matrix for thin film solar cells with 492 mV open circuit voltage. Sol. Energy Mater. Sol. Cells 100, 65 (2012)CrossRefGoogle Scholar
  33. G.G. Qin, S.Y. Ma, Z.C. Ma, Electroluminescence from amorphous SiSiO2 superlattices. Solid State Commun. 106, 329 (1998)CrossRefGoogle Scholar
  34. Y.J. Rui, S.X. Li, J. Xu, Size-dependent electroluminescence from Si quantum dots embedded in amorphous SiC matrix. J. Appl. Phys. 110, 064322 (2011)CrossRefGoogle Scholar
  35. W. Shockley, H.J. Queisser, Detailed Balance Limit of Efficiency of p - n Junction Solar Cells. J. Appl. Phys. 32, 510 (1961)CrossRefGoogle Scholar
  36. H.J. Syu, S.C. Shiu, C.F. Lin, Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%. Sol. Energy Mater. Sol. Cells 98, 267 (2012)CrossRefGoogle Scholar
  37. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627 (1966)CrossRefGoogle Scholar
  38. H.P. Wang, T.Y. Lin, C.W. Hsu, Realizing High-Efficiency Omnidirectional n-Type Si Solar Cells via the Hierarchical Architecture Concept with Radial Junctions. ACS Nano 7, 9325 (2013)CrossRefGoogle Scholar
  39. J. Xu, X. Li, Z. Cen, Formation of a dense nanocrystalline Si array on an insulating layer by laser irradiation of ultrathin amorphous Si films. Scr. Mater. 53, 811 (2005)CrossRefGoogle Scholar
  40. J. Xu, S.H. Sun, Y.Q. Cao, Light Trapping and Down - Shifting Effect of Periodically Nanopatterned Si - Quantum - Dot - Based Structures for Enhanced Photovoltaic Properties. Part. Part. Syst. Charact. 31, 459 (2014)CrossRefGoogle Scholar
  41. S. Yamada, Y. Kurokawa, S. Miyajima, High open-circuit voltage oxygen-containing silicon quantum dots superlattice solar cells. Proceedings 35th IEEE Photovoltaic Specialists Conference, (2010), 000766Google Scholar
  42. S. Yamada, Y. Kurokawa, S. Miyajima, Improvement of electrical properties of silicon quantum dot superlattice solar cells with diffusion barrier layers. Jpn. J. Appl. Phys. 52, 04CR02 (2013)CrossRefGoogle Scholar
  43. L.W. Yu, S. Misra, J.Z. Wang, Understanding light harvesting in radial junction amorphous silicon thin film solar cells. Sci. Rep. 4, 4357 (2014)CrossRefGoogle Scholar
  44. M. Zacharias, J. Blasing, P. Veit, Thermal crystallization of amorphous Si/SiO2 superlattices. Appl. Phys. Lett. 74, 2614 (1999)CrossRefGoogle Scholar
  45. M. Zacharias, J. Heitmann, R. Scholz, Size-controlled highly luminescent silicon nanocrystals: A Si/SiO2 superlattice approach. Appl. Phys. Lett. 80, 661 (2002)CrossRefGoogle Scholar
  46. P. Zhang, X.W. Zhang, J. Xu, Tunable nonlinear optical properties in nanocrystalline Si/SiO2 multilayers under femtosecond excitation. Nanoscale Res. Lett. 9, 28 (2014a)CrossRefGoogle Scholar
  47. P. Zhang, X.W. Zhang, P. Lu, Interface state-related linear and nonlinear optical properties of nanocrystalline Si/SiO2 multilayers. Appl. Surf. Sci. 292, 262 (2014b)CrossRefGoogle Scholar
  48. J. Zhu, C.M. Hsu, Z. Yu, Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 1979 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Laboratory of Solid State Microstructures and School of Electronic Science and Engineering, The Collaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjingChina
  2. 2.College of Physics Science and TechnologyYangzhou UniversityYangzhouChina

Section editors and affiliations

  • Jun Xu
    • 1
  1. 1.School of Electronic Science and EngineeringNanjing UniversityNanjingChina

Personalised recommendations