Carbon Impurity in Crystalline Silicon

Reference work entry


Carbon impurity contamination during growth of crystalline silicon has been systematically studied in a representative unidirectional furnace. Mechanism of carbon incorporation into silicon has been illuminated. To better understand the carbon contamination process, a global simulation in a unidirectional solidification furnace was implemented. The effects of flow rate and pressure on impurities were examined.

To reduce carbon contamination, an improved unidirectional solidification furnace with a crucible cover was designed. Results show that this improvement enables the production of a high-purity multicrystalline silicon crystal in a unidirectional solidification furnace. In addition, the material of crucible cover has a great influence on carbon contamination. Another possible contamination mechanism due to the reaction between silica crucible and the graphite susceptor has also been given. Results show that the crucible reaction with graphite susceptor has a marked effect on carbon impurity in the crystal.


Carbon contamination Crystalline silicon Global simulation Unidirectional solidification furnace Argon gas flow rate Argon gas pressure Crucible cover Cover material Reaction between silica crucible and graphite susceptor 


  1. J.A. Baker, Semiconductor Silicon 1969, ed. by R.R. Haberecht, E.L. Kern (Electrochemical Society, New York, 1969)Google Scholar
  2. J. Bauer, O. Breitenstein, J. P. Rakotoniaina, in Proceedings of 21st EUPVSEC, Dresden, 2006, p. 1115Google Scholar
  3. D.E. Bornside, R.A. Brown, J. Electrochem. Soc. 142, 2790 (1995)CrossRefGoogle Scholar
  4. T. Fukuda, M. Koizuka, A. Ohsawa, J. Electrochem. Soc. 141, 2216 (1994)CrossRefGoogle Scholar
  5. R.B. Ganesh, H. Matsuo, T. Kawamura, Y. Kangawa, K. Arafune, Y. Ohshita, M. Yamaguchi, K. Kakimoto, J. Cryst Growth 310, 2697 (2008)CrossRefGoogle Scholar
  6. B. Gao, S. Nakano, K. Kakimoto, Global simulation of coupled carbon and oxygen transport in a unidirectional solidification furnace for solar cells. J. Electrochem. Soc. 157(2), H153–H159 (2010a)CrossRefGoogle Scholar
  7. B. Gao, X.J. Chen, S. Nakano, K. Kakimoto, J. Cryst Growth 312, 1572 (2010b)CrossRefGoogle Scholar
  8. U. Goesele, Oxygen, carbon, hydrogen and nitrogen in crystalline silicon, in Mater. Res. Soc. Symp. Proc., ed. by J. C. Mikkelsen Jr., S. P. Peaton, J. W. Corbett, S. J. Pennycook, (MRS, Pittsburgh, 1986), p. 419Google Scholar
  9. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements (Pergamon, Oxford, 1984), pp. 393–399. ISBN 0-08-022057-6Google Scholar
  10. M. Higasa, Y. Nagai, S. Nakagawa, K. Kashima, ECS Trans. 72(4), 57 (2016)CrossRefGoogle Scholar
  11. H. Hirata, K. Hoshikawa, J. Cryst Growth 125, 181 (1992)CrossRefGoogle Scholar
  12. K.A. Hoffmann, S.T. Chiang, Computational Fluid Dynamics, vol II (Engineering Education System, Wichita, 2000), p. 69Google Scholar
  13. K. Hoshikawa, X. Huang, Mater. Sci. Eng. B72, 73 (2000)CrossRefGoogle Scholar
  14. P. Jenny, B. Müller, Comput. Fluids 28, 951 (1999)CrossRefGoogle Scholar
  15. K. Kakimoto, K.W. Yi, M. Eguchi, J. Cryst Growth 163, 238 (1996)CrossRefGoogle Scholar
  16. T.A. Kinney, R.A. Brown, J. Crystal Growth 132, 551 (1993)CrossRefGoogle Scholar
  17. S. Kishino, M. Kanamori, N. Yoshihiro, M. Tajima, I. Lizuka, J. Appl. Phys. 50, 8240 (1979)CrossRefGoogle Scholar
  18. N. Kobayashi, J. Cryst Growth 108, 240 (1991)CrossRefGoogle Scholar
  19. B.O. Kolbesen, in Aggregation Phenomena of Point Defects in Silicon, ed. by E. Sirtl, J. Goorissen. The Electrochemical Society Proceedings Series, vol 83–4 (Pennington, 1983), pp. 155–175Google Scholar
  20. Y.R. Li, M.W. Li, N. Imaishi, Y. Akiyama, T. Tsukada, J. Cryst Growth 267, 466 (2004)CrossRefGoogle Scholar
  21. L.J. Liu, K. Kakimoto, Int. J. Heat Mass Transf 48, 4481 (2005)CrossRefGoogle Scholar
  22. L.J. Liu, S. Nakano, K. Kakimoto, J. Cryst Growth 299, 48 (2007)CrossRefGoogle Scholar
  23. N. Machida, Y. Suzuki, K. Abe, N. Ono, M. Kida, Y. Shimizu, J. Cryst Growth 186, 362 (1998)CrossRefGoogle Scholar
  24. N. Machida, K. Hoshikawa, Y. Shimizu, J. Cryst Growth 210, 532 (2000)CrossRefGoogle Scholar
  25. H. Matsuo, R.B. Ganesh, S. Nakano, L.J. Liu, Y. Kangawa, K. Arafune, Y. Ohshita, M. Yamaguchi, K. Kakimoto, J. Cryst Growth 310, 2204 (2008)CrossRefGoogle Scholar
  26. Y. Nagai, S. Nakagawa, K. Kashima, J. Cryst Growth 401, 737 (2014)CrossRefGoogle Scholar
  27. M. Ogino, Appl. Phys. Lett. 41, 847 (1982)CrossRefGoogle Scholar
  28. S. Pizzini, A. Sandrinelli, M. Beghi, D. Narducci, F. Allegretti, S. Torchio, G. Fabbri, G.P. Ottaviani, F. Demartin, A. Fusi, J. Electrochem. Soc. 135, 155 (1988)CrossRefGoogle Scholar
  29. L. Raabe, O. Patzold, I. Kupka, J. Ehrig, S. Wurzner, M. Stelter, J. Cryst Growth 318, 234 (2011)CrossRefGoogle Scholar
  30. R.C. Reid, J.M. Prausnitz, T.K. Sherwood, The Properties of Gases and Liquids, 3rd edn. (McGraw-Hill, Inc, New York, 1987)Google Scholar
  31. C. Reimann, J. Friedrich, G. Müller, S. Wurzner, H.J. Möller, 22nd European Photovoltaic Solar Energy Conference (WIP-Munich, Milan, 2007)Google Scholar
  32. C. Reimann, T. Jung, J. Friedrich, G. Müller, in Proceedings of the 33rd IEEE Photovoltaic Specialists Conference, 2008. ISBN 978-1-4244-1641-7Google Scholar
  33. F. Schmid, C.P. Khattack, J. Electrochem. Soc. 126, 935 (1979)CrossRefGoogle Scholar
  34. F. Shimura, Semiconductor Silicon Crystal Technology (Academic Press, New York, 1989), p. 148Google Scholar
  35. A.D. Smirnov, V.V. Kalaev, J. Cryst Growth 310, 2970 (2008)CrossRefGoogle Scholar
  36. A.D. Smirnov, V.V. Kalaev, J. Cryst Growth 311, 829 (2009)CrossRefGoogle Scholar
  37. Q. Sun, K.H. Yao, J. Lagowski, H.C. Gatos, J. Appl. Phys. 67, 4313 (1990)CrossRefGoogle Scholar
  38. M. Watanabe, K.W. Yi, T. Hibiya, K. Kakimoto, Progr. Cryst Growth Charact Mater. 38, 215 (1999)CrossRefGoogle Scholar
  39. A.G. Whittaker, Science 200, 763 (1978)CrossRefGoogle Scholar
  40. K.W. Yi, K. Kakimoto, M. Eguchi, H. Noguchi, J. Cryst Growth 165, 358 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The Institute of Technological SciencesWuhan UniversityWuhanChina
  2. 2.RIAMKyushu UniversityFukuokaJapan

Section editors and affiliations

  • Michael Seibt
    • 1
  1. 1.Faculty of Physics - IV. Physical Institute - Ropers groupGeorg-August-University GoettingenGoettingenGermany

Personalised recommendations