Handbook of Photovoltaic Silicon pp 437-462 | Cite as
Carbon Impurity in Crystalline Silicon
Abstract
Carbon impurity contamination during growth of crystalline silicon has been systematically studied in a representative unidirectional furnace. Mechanism of carbon incorporation into silicon has been illuminated. To better understand the carbon contamination process, a global simulation in a unidirectional solidification furnace was implemented. The effects of flow rate and pressure on impurities were examined.
To reduce carbon contamination, an improved unidirectional solidification furnace with a crucible cover was designed. Results show that this improvement enables the production of a high-purity multicrystalline silicon crystal in a unidirectional solidification furnace. In addition, the material of crucible cover has a great influence on carbon contamination. Another possible contamination mechanism due to the reaction between silica crucible and the graphite susceptor has also been given. Results show that the crucible reaction with graphite susceptor has a marked effect on carbon impurity in the crystal.
Keywords
Carbon contamination Crystalline silicon Global simulation Unidirectional solidification furnace Argon gas flow rate Argon gas pressure Crucible cover Cover material Reaction between silica crucible and graphite susceptorReferences
- J.A. Baker, Semiconductor Silicon 1969, ed. by R.R. Haberecht, E.L. Kern (Electrochemical Society, New York, 1969)Google Scholar
- J. Bauer, O. Breitenstein, J. P. Rakotoniaina, in Proceedings of 21st EUPVSEC, Dresden, 2006, p. 1115Google Scholar
- D.E. Bornside, R.A. Brown, J. Electrochem. Soc. 142, 2790 (1995)CrossRefGoogle Scholar
- T. Fukuda, M. Koizuka, A. Ohsawa, J. Electrochem. Soc. 141, 2216 (1994)CrossRefGoogle Scholar
- R.B. Ganesh, H. Matsuo, T. Kawamura, Y. Kangawa, K. Arafune, Y. Ohshita, M. Yamaguchi, K. Kakimoto, J. Cryst Growth 310, 2697 (2008)CrossRefGoogle Scholar
- B. Gao, S. Nakano, K. Kakimoto, Global simulation of coupled carbon and oxygen transport in a unidirectional solidification furnace for solar cells. J. Electrochem. Soc. 157(2), H153–H159 (2010a)CrossRefGoogle Scholar
- B. Gao, X.J. Chen, S. Nakano, K. Kakimoto, J. Cryst Growth 312, 1572 (2010b)CrossRefGoogle Scholar
- U. Goesele, Oxygen, carbon, hydrogen and nitrogen in crystalline silicon, in Mater. Res. Soc. Symp. Proc., ed. by J. C. Mikkelsen Jr., S. P. Peaton, J. W. Corbett, S. J. Pennycook, (MRS, Pittsburgh, 1986), p. 419Google Scholar
- N.N. Greenwood, A. Earnshaw, Chemistry of the Elements (Pergamon, Oxford, 1984), pp. 393–399. ISBN 0-08-022057-6Google Scholar
- M. Higasa, Y. Nagai, S. Nakagawa, K. Kashima, ECS Trans. 72(4), 57 (2016)CrossRefGoogle Scholar
- H. Hirata, K. Hoshikawa, J. Cryst Growth 125, 181 (1992)CrossRefGoogle Scholar
- K.A. Hoffmann, S.T. Chiang, Computational Fluid Dynamics, vol II (Engineering Education System, Wichita, 2000), p. 69Google Scholar
- K. Hoshikawa, X. Huang, Mater. Sci. Eng. B72, 73 (2000)CrossRefGoogle Scholar
- P. Jenny, B. Müller, Comput. Fluids 28, 951 (1999)CrossRefGoogle Scholar
- K. Kakimoto, K.W. Yi, M. Eguchi, J. Cryst Growth 163, 238 (1996)CrossRefGoogle Scholar
- T.A. Kinney, R.A. Brown, J. Crystal Growth 132, 551 (1993)CrossRefGoogle Scholar
- S. Kishino, M. Kanamori, N. Yoshihiro, M. Tajima, I. Lizuka, J. Appl. Phys. 50, 8240 (1979)CrossRefGoogle Scholar
- N. Kobayashi, J. Cryst Growth 108, 240 (1991)CrossRefGoogle Scholar
- B.O. Kolbesen, in Aggregation Phenomena of Point Defects in Silicon, ed. by E. Sirtl, J. Goorissen. The Electrochemical Society Proceedings Series, vol 83–4 (Pennington, 1983), pp. 155–175Google Scholar
- Y.R. Li, M.W. Li, N. Imaishi, Y. Akiyama, T. Tsukada, J. Cryst Growth 267, 466 (2004)CrossRefGoogle Scholar
- L.J. Liu, K. Kakimoto, Int. J. Heat Mass Transf 48, 4481 (2005)CrossRefGoogle Scholar
- L.J. Liu, S. Nakano, K. Kakimoto, J. Cryst Growth 299, 48 (2007)CrossRefGoogle Scholar
- N. Machida, Y. Suzuki, K. Abe, N. Ono, M. Kida, Y. Shimizu, J. Cryst Growth 186, 362 (1998)CrossRefGoogle Scholar
- N. Machida, K. Hoshikawa, Y. Shimizu, J. Cryst Growth 210, 532 (2000)CrossRefGoogle Scholar
- H. Matsuo, R.B. Ganesh, S. Nakano, L.J. Liu, Y. Kangawa, K. Arafune, Y. Ohshita, M. Yamaguchi, K. Kakimoto, J. Cryst Growth 310, 2204 (2008)CrossRefGoogle Scholar
- Y. Nagai, S. Nakagawa, K. Kashima, J. Cryst Growth 401, 737 (2014)CrossRefGoogle Scholar
- M. Ogino, Appl. Phys. Lett. 41, 847 (1982)CrossRefGoogle Scholar
- S. Pizzini, A. Sandrinelli, M. Beghi, D. Narducci, F. Allegretti, S. Torchio, G. Fabbri, G.P. Ottaviani, F. Demartin, A. Fusi, J. Electrochem. Soc. 135, 155 (1988)CrossRefGoogle Scholar
- L. Raabe, O. Patzold, I. Kupka, J. Ehrig, S. Wurzner, M. Stelter, J. Cryst Growth 318, 234 (2011)CrossRefGoogle Scholar
- R.C. Reid, J.M. Prausnitz, T.K. Sherwood, The Properties of Gases and Liquids, 3rd edn. (McGraw-Hill, Inc, New York, 1987)Google Scholar
- C. Reimann, J. Friedrich, G. Müller, S. Wurzner, H.J. Möller, 22nd European Photovoltaic Solar Energy Conference (WIP-Munich, Milan, 2007)Google Scholar
- C. Reimann, T. Jung, J. Friedrich, G. Müller, in Proceedings of the 33rd IEEE Photovoltaic Specialists Conference, 2008. ISBN 978-1-4244-1641-7Google Scholar
- F. Schmid, C.P. Khattack, J. Electrochem. Soc. 126, 935 (1979)CrossRefGoogle Scholar
- F. Shimura, Semiconductor Silicon Crystal Technology (Academic Press, New York, 1989), p. 148Google Scholar
- A.D. Smirnov, V.V. Kalaev, J. Cryst Growth 310, 2970 (2008)CrossRefGoogle Scholar
- A.D. Smirnov, V.V. Kalaev, J. Cryst Growth 311, 829 (2009)CrossRefGoogle Scholar
- Q. Sun, K.H. Yao, J. Lagowski, H.C. Gatos, J. Appl. Phys. 67, 4313 (1990)CrossRefGoogle Scholar
- M. Watanabe, K.W. Yi, T. Hibiya, K. Kakimoto, Progr. Cryst Growth Charact Mater. 38, 215 (1999)CrossRefGoogle Scholar
- A.G. Whittaker, Science 200, 763 (1978)CrossRefGoogle Scholar
- K.W. Yi, K. Kakimoto, M. Eguchi, H. Noguchi, J. Cryst Growth 165, 358 (1996)CrossRefGoogle Scholar