Wafer Cleaning, Etching, and Texturization

Reference work entry


Wafer preparation for silicon PV includes wet chemical cleaning, etching, and texturization steps. Aqueous solutions containing either acids or strong bases result in very different etch rates. Underlying chemistry is used for all three applications. Typical cleaning mixtures such as RCA-SC1 and RCA-SC2, SPM, and dHF are introduced with their respective properties as well as acidic etching systems like hydrofluoric acid/nitric acid (HF/HNO3) and alkaline mixtures such as potassium hydroxide/isopropanol (KOH/IPA). While the latter is used for texturing monocrystalline wafers due to the anisotropic etching behavior, the former HF-containing systems are generally used for isotropically texturing multicrystalline silicon wafers. Fundamental chemical, physical, thermodynamic, and kinetic aspects of these systems are presented and discussed. In all cases, it has to be pointed out that a complete understanding of the reaction mechanisms causing the observed properties is still missing to a large extent. Therefore, many aspects of silicon cleaning, etching, and texturization have only been optimized empirically. Further studies are necessary to provide a basis for future improvements, which are not only focused on scientific aspects but also on environmental and economic issues.


Wet-chemical treatment Cleaning Etching Texturization Silicon surface Silicon dissolution Saw damage removal Contaminations Impurities 


  1. J. Acker, A. Rietig, M. Steinert, V. Hoffmann, J. Phys. Chem. C 116, 20380 (2012)CrossRefGoogle Scholar
  2. P. Allongue, V. Costa Kieling, H. Gerischer, J. Electrochem. Soc. 140, 1018 (1993)CrossRefGoogle Scholar
  3. O.J. Anttila, M.V. Tilli, M. Schaekers, C.L. Claeys, J. Electrochem. Soc. 139, 1180 (1992)CrossRefGoogle Scholar
  4. P.W. Atkins, J. de Paula, Physical Chemistry, 9th edn. (Oxford University Press, Oxford/New York, 2010)Google Scholar
  5. T. Baum, D.J. Schiffrin, J. Chem. Soc. Faraday Trans. 94, 691 (1998)CrossRefGoogle Scholar
  6. E. J. Bergman, S. Lagrange, M. Claes, S. de Gendt, E. Röhr, Solid State Phenom. 76–77, 85 (2001)Google Scholar
  7. F. Buchholz, Metal Surface Contamination in c-Si Solar Cell Processing (Dissertation, TU Bergakademie Freiberg, 2015).Google Scholar
  8. S.A. Campbell, D.J. Schiffrin, P.J. Tufton, J. Electroanal. Chem. 344, 211 (1993)CrossRefGoogle Scholar
  9. G.F. Cerofolini, A. Giussani, A. Modelli, D. Mascolo, D. Ruggiero, D. Narducci, E. Romano, Appl. Surf. Sci. 254, 5781 (2008)CrossRefGoogle Scholar
  10. Y.J. Chabal, A.L. Harris, K. Raghavachari, J.C. Tully, Int. J. Mod. Phys. B 07, 1031 (1993)CrossRefGoogle Scholar
  11. G.-M. Choi, T. Ohmi, J. Electrochem. Soc. 148, G241–G248 (2001)CrossRefGoogle Scholar
  12. M. Claes, E. Röhr, T. Conard, F. de Smedt, S. de Gendt, W. Storm, T. Bauer, P.W. Mertens, M.M. Heyns, Solid State Phenom. 76–77, 67 (2001)CrossRefGoogle Scholar
  13. O. Doll, S. Metzger, B.O. Kolbesen, Freiberg. Forschungsh. B 153 (2004)Google Scholar
  14. M. George, H. Treichel, D. Bohling, A. Goldstein, H. Litvak, S. Ostrowski, I. Mowat, W. Kern, ECS Trans. 41, 295 (2011)CrossRefGoogle Scholar
  15. H. Gerischer, P. Allongue, V. Costa Kieling, Ber. Bunsen-Ges. 97, 753 (1993)CrossRefGoogle Scholar
  16. O.J. Glembocki, R.E. Stahlbush, M. Tomkiewicz, J. Electrochem. Soc. 132, 145 (1985)CrossRefGoogle Scholar
  17. A. Goetzberger, J. Knobloch, B. Voß, Sonnenenergie: Photovoltaik: Physik und Technologie der Solarzelle (Teubner, Stuttgart, 1997)Google Scholar
  18. C. Gondek, M. Lippold, I. Röver, K. Bohmhammel, E. Kroke, J. Phys. Chem. C 118, 2044 (2014)CrossRefGoogle Scholar
  19. C. Gondek, R. Hanich, F. Honeit, A. Lißner, A. Stapf, E. Kroke, J. Phys. Chem. C 120, 22349 (2016)CrossRefGoogle Scholar
  20. C. Gottschalk, J. Schweckendiek, Micro 22, 81 (2004)Google Scholar
  21. M.A. Gosálvez, Atomistic Modelling of Anisotropic Etching of Crystalline Silicon (Dissertation, Helsinki University of Technology, Espoo, 2003).Google Scholar
  22. M.A. Gosálvez, I. Zubel, E. Viinikka, in Handbook of Silicon Based MEMS Materials and Technologies, ed. by V. Lindroos, M. Tilli, A. Lehto, T. Motooka (William Andrew/Elsevier, Amsterdam, Boston, 2010), pp. 375–407.Google Scholar
  23. P. Gupta, A.C. Dillon, A.S. Bracker, S.M. George, Surf. Sci. 245, 360 (1991)CrossRefGoogle Scholar
  24. M.M. Heyns, P.W. Martens, J. Ruzyllo, M.Y.M. Lee, Solid State Technol. 42, 37 (1999)Google Scholar
  25. V. Hoffmann, M. Steinert, J. Acker, J. Anal. At. Spectrom 26, 1990 (2011)CrossRefGoogle Scholar
  26. A.F. Holleman, E. Wiberg, N. Wiberg, Lehrbuch der anorganischen Chemie, 102nd edn. (de Gruyter, Berlin, New York, 2007)CrossRefGoogle Scholar
  27. R. Hull, Properties of Crystalline Silicon (Institution of Electrical Engineers, London, 1999)Google Scholar
  28. A.A. Istratov, H. Hieslmair, E.R. Weber, Appl. Phys. A 70, 489 (2000)CrossRefGoogle Scholar
  29. J.J. Kelly, H.G.G. Philipsen, Curr. Opin. Solid State Mater. Sci. 9, 84 (2005)CrossRefGoogle Scholar
  30. M.T. Kelly, J.K.M. Chun, A.B.. Bocarsly, Appl. Phys. Lett. 64, 1693 (1994)CrossRefGoogle Scholar
  31. J.J. Kelly, X.H. Xia, C.M.A. Ashruf, P.J. French, IEEE Sensors J. 1, 127 (2001)CrossRefGoogle Scholar
  32. W. Kern, J. Electrochem. Soc. 137, 1887 (1990)CrossRefGoogle Scholar
  33. W. Kern, Handbook of Semiconductor Wafer Cleaning Technology: Science, Technology, and Applications (Noyes Publications, Park Ridge, 1993)Google Scholar
  34. W. Kern, D.A. Puotinen, RCA Rev. 187 (1970)Google Scholar
  35. K.W. Kolasinski, Phys. Chem. Chem. Phys. 5, 1270 (2003)CrossRefGoogle Scholar
  36. K.W. Kolasinski, Surf. Sci. 603, 1904 (2009)CrossRefGoogle Scholar
  37. K.W. Kolasinski, J. Phys. Chem. C 114, 22098 (2010)CrossRefGoogle Scholar
  38. E.S. Kooij, K. Butter, J.J. Kelly, Electrochem. Solid St. 2, 178 (1999)CrossRefGoogle Scholar
  39. V. Lehmann, The Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications (Wiley-VCH, Weinheim, 2002)CrossRefGoogle Scholar
  40. M. Lippold, Beiträge zum Verständnis des sauren nasschemischen Ätzens von Silicium – Das System HF-HNO3-H2SO4/H2O (Dissertation, TU Bergakademie Freiberg, 2014).Google Scholar
  41. M. Lippold, S. Patzig-Klein, E. Kroke, Z. Naturforsch., B: J. Chem. Sci. 66b, 155 (2011)Google Scholar
  42. M. Lippold, F. Buchholz, C. Gondek, F. Honeit, E. Wefringhaus, E. Kroke, Sol. Energy Mater. Sol. Cells 127, 104 (2014)CrossRefGoogle Scholar
  43. L.M. Loewenstein, P.W. Mertens, J. Electrochem. Soc. 145, 2841 (1998)CrossRefGoogle Scholar
  44. L.M. Loewenstein, F. Charpin, P.W. Mertens, J. Electrochem. Soc. 146, 719 (1999)CrossRefGoogle Scholar
  45. H. Löwe, P. Keppel, C. Moritz, D. Zach, Halbleiterätzverfahren: Kinetik, Verfahrensgrundlagen und Anwendungsgebiete von nasschemischen Ätzverfahren für Si, GaAs, GaP und InP (Akademie-Verlag, Berlin, 1990)Google Scholar
  46. Y.-R. Luo, Comprehensive handbook of chemical bond energies (CRC Press, Boca Raton, 2007)CrossRefGoogle Scholar
  47. A.R. Martin, M. Baeyens, W. Hub, P.W. Mertens, B.O. Kolbesen, Microelectron. Eng. 45, 197 (1999)CrossRefGoogle Scholar
  48. B. Meinel, T. Koschwitz, C. Blocks, J. Acker, Mater. Sci. Semicond. Process. 26, 93 (2014)CrossRefGoogle Scholar
  49. M. Meuris, S. Arnauts, I. Cornelissen, K. Kenis, M. Lux, S. De Gendt, P.W. Mertens, I. Teerlinck, R. Vos, L.M. Loewenstein, M.M. Heyns, K. Wolke, in IEEE International Symposium on Semiconductor Manufacturing (1999), p. 157.Google Scholar
  50. H.J. Möller, Adv. Eng. Mater. 6, 501 (2004)CrossRefGoogle Scholar
  51. Y. Mori, K. Uemura, K. Shimanoe, T. Sakon, J. Electrochem. Soc. 142, 3104 (1995)CrossRefGoogle Scholar
  52. E. Morita, T. Yoshimi, Y. Shimanuk, ECS Extended Abstracts 89–1, 22 (1989)Google Scholar
  53. D.-H. Neuhaus, A. Münzer, Adv. Optoelectron. 2007, 15 pages (2007).Google Scholar
  54. Y. Nishimoto, T. Ishihara, K. Namba, J. Electrochem. Soc. 146, 457 (1999)CrossRefGoogle Scholar
  55. T. Ohmi, J. Electrochem. Soc. 143, 2957 (1996)CrossRefGoogle Scholar
  56. T.M. Pan, T.F. Lei, T.S. Chao, M.C. Liaw, F.H. Ko, C.P. Lu, J. Electrochem. Soc. 148, G315–G320 (2001)CrossRefGoogle Scholar
  57. S. Patzig-Klein, G. Roewer, E. Kroke, Mater. Sci. Semicond. Process. 13, 71 (2010)CrossRefGoogle Scholar
  58. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (National Association of Corrosion Engineers, Houston, 1974)Google Scholar
  59. K.A. Reinhardt, W. Kern, Handbook of Silicon Wafer Cleaning Technology, 2nd edn. (William Andrew, Norwich, 2008)Google Scholar
  60. H. Robbins, B. Schwartz, J. Electrochem. Soc. 106, 505 (1959)CrossRefGoogle Scholar
  61. H. Robbins, B. Schwartz, J. Electrochem. Soc. 107, 108 (1960)CrossRefGoogle Scholar
  62. I. Röver, G. Roewer, K. Bohmhammel, K. Wambach, Freiberg. Forschungsh. B 179 (2004)Google Scholar
  63. K. Sato, M. Shikida, T. Yamashiro, M. Tsunekawa, S. Ito, Sens. Actuators, A 73, 122 (1999)CrossRefGoogle Scholar
  64. F. Schomann, K. Graff, J. Electrochem. Soc. 136, 2025 (1989)CrossRefGoogle Scholar
  65. B. Schwartz, H. Robbins, J. Electrochem. Soc. 108, 365 (1961)CrossRefGoogle Scholar
  66. B. Schwartz, H. Robbins, J. Electrochem. Soc. 123, 1903 (1976)CrossRefGoogle Scholar
  67. J. Schweckendiek, R. Hoyer, S. Patzig-Klein, F. Delahaye, G. Knoch, H. Nussbaumer, Solid State Phenom. 195, 283 (2012)CrossRefGoogle Scholar
  68. H. Seidel, L. Csepregi, A. Heuberger, H. Baumgärtel, J. Electrochem. Soc. 137, 3612 (1990)CrossRefGoogle Scholar
  69. Y. Shiramizu, K. Watanabe, M. Tanaka, H. Aoki, H. Kitajima, J. Electrochem. Soc. 143, 1632 (1996)CrossRefGoogle Scholar
  70. A. Stapf, F. Honeit, C. Gondek, E. Kroke, Siliziumwafer, Verfahren zum Strukturieren eines Siliziumwafers und Solarzelle, DE 10 2014 001 363 (2016).Google Scholar
  71. A. Stapf, F. Honeit, C. Gondek, E. Kroke, Sol. Energy Mater. Sol. Cells 159, 112 (2017)CrossRefGoogle Scholar
  72. M. Steinert, J. Acker, M. Krause, S. Oswald, K. Wetzig, J. Phys. Chem. B 110, 11377 (2006)CrossRefGoogle Scholar
  73. M. Steinert, J. Acker, S. Oswald, K. Wetzig, J. Phys. Chem. C 111, 2133 (2007)CrossRefGoogle Scholar
  74. H. Treichel, A. Goldstein, M. George, D. Bohling, J. Rentsch, A. Oltersdorf, M. Zimmer, S. Ostrowski, I. Mowat, L. Wang, W. Kern, Photovolt Int 12, 81 (2011)Google Scholar
  75. D.R. Turner, J. Electrochem. Soc. 107, 810 (1960)CrossRefGoogle Scholar
  76. E. Vazsonyi, K. de Clercq, R. Einhaus, E. van Kerschaver, K. Said, J. Poortmans, J. Szlufcik, J. Nijs, Sol. Energy Mater. Sol. Cells 57, 179 (1999)CrossRefGoogle Scholar
  77. É. Vázsonyi, E. Szilágyi, P. Petrik, Z. Horváth, T. Lohner, M. Fried, G. Jalsovszky, Thin Solid Films 388, 295 (2001)CrossRefGoogle Scholar
  78. R. Walsh, Acc. Chem. Res. 14, 246 (1981)CrossRefGoogle Scholar
  79. Z.-H. Wang, T. Urisu, H. Watanabe, K. Ooi, G.R. Rao, S. Nanbu, J. Maki, M. Aoyagi, Surf. Sci. 575, 330 (2005)CrossRefGoogle Scholar
  80. M.K. Weldon, B.B. Stefanov, K. Raghavachari, Y.J. Chabal, Phys. Rev. Lett. 79, 2851 (1997)CrossRefGoogle Scholar
  81. G. Willeke, K. Kellermann, Semicond. Sci. Technol. 11, 415 (1996)CrossRefGoogle Scholar
  82. K. Wostyn, W. Baekelant, J. Rip, M. Haslinger, K. Kenis, H. Struyf, M. Claes, P.W. Mertens, S. de Gendt, Solid State Phenom. 195, 293 (2012)CrossRefGoogle Scholar
  83. R. Zanoni, G. Righini, G. Mattogno, L. Schirone, G. Sotgiu, F. Rallo, JOL 80, 159 (1999)Google Scholar
  84. X.G. Zhang, Electrochemistry of Silicon and Its Oxide (Kluwer Academic/Plenum Publishers, New York, 2001)Google Scholar
  85. I. Zubel, M. Kramkowska, Sens. Actuators, A 101, 255 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Inorganic ChemistryTU Bergakademie FreibergFreibergGermany

Section editors and affiliations

  • Hans Joachim Möller
    • 1
  1. 1.Fraunhofer Institute for Semiconductor TechnologyFraunhofer Institute for Solar Energy SystemsFreibergGermany

Personalised recommendations