Growth of Crystalline Silicon for Solar Cells: Noncontact Crucible Method

Reference work entry


The noncontact crucible (NOC) method has the potential to be an advanced cast method. It is effective in obtaining Si single ingots with large diameter and volume using cast furnace, and solar cells manufactured with Si obtained this way have high yield and high conversion efficiency. Several novel characteristics of this method are explained based on the existence of a large low-temperature region in a Si melt, which is key to realize its enclosing potential as follows. The largest diameter ratio of 0.9 was obtained by expanding the low-temperature region in the Si melt. For p-type solar cells, the highest of 19.14% and the average conversion efficiencies of 19.0% were obtained for the NOC wafers, using the same solar cell structure and process to obtain the conversion efficiency of 19.1% for a p-type Czochralski (CZ) wafers. The present method realized solar cells with conversion efficiency and yield as high as those of CZ solar cells using cast furnace for the first time. The latest information about the growth of Si ingots using the NOC method is explained.


Melt growth NOC method Solar cells Si single crystals Growth method Large diameter Cast furnace Conversion efficiency Yield Low-temperature region 


  1. D.F. Bliss, Evolution and application of the Kyropoulos crystal growth method, in: 50 Years Progress in Crystal Growth: A Reprint Collection, ed. by R.S. Feigelson (Elsevier, Amsterdam, 2004), pp. 29–33Google Scholar
  2. W.N. Borle, S. Tata, S.K. Varma, J. Cryst. Growth 8, 223 (1971)CrossRefGoogle Scholar
  3. S. Castellanos, M. Kivambe, M.A. Jensen, D.M. Powell, K. Nakajima, K. Morishita, R. Murai, T. Buonassisi, Science Direct, Energy Procedia 92, 779 (2016)CrossRefGoogle Scholar
  4. G. Coletti, P. Manshanden, S. Bernardini, P.C.P. Bronsveld, A. Gutjahr, Z. Hu, G. Li, Sol. Energy Mater. Sol. Cells 130, 647 (2014)CrossRefGoogle Scholar
  5. J. Czochralski, Z. Phys. Chem. 92, 219 (1917)Google Scholar
  6. W. Dash, C. J. Appl. Phys. 30, 459 (1959)CrossRefGoogle Scholar
  7. S.E. Demina, E.N. Bystrova, M.A. Lukanina, V.M. Mamedov, V.S. Yuferev, E.V. Eskov, M.V. Nikolenko, V.S. Postolov, V.V. Kalaev, Opt. Mater. 30, 62 (2007)CrossRefGoogle Scholar
  8. K. Fujiwara, K. Maeda, N. Usami, G. Sazaki, Y. Nose, A. Nomura, T. Shishido, K. Nakajima, Acta Mater. 56, 2663 (2008)CrossRefGoogle Scholar
  9. A. Herguth, G. Schubert, M. Kaes, G. Hahn, in 21st EUPVSEC, p. 530, 2006Google Scholar
  10. M.A. Jensen, V. LaSalvia, A.E. Morishige, K. Nakajima, Y. Veschetti, F. Jay, A. Jouini, A. Youssef, P. Stradins, T. Buonassisi, in Silicon PV, 2016Google Scholar
  11. M. Kivambe, D.M. Powell, S. Castellanos, M.A. Jensen, A.E. Morishige, K. Nakajima, K. Morishita, R. Murai, T. Buonassisi, J. Cryst. Growth 407, 31 (2014)CrossRefGoogle Scholar
  12. E. Kuroda, S. Matsubara, T. Saitoh, Jpn. J. Appl. Phys. 19, L361 (1980a)CrossRefGoogle Scholar
  13. E. Kuroda, S. Matsubara, T. Saitoh, Jpn. J. Appl. Phys. 19, L361 (1980b)CrossRefGoogle Scholar
  14. C.W. Lan, in 6th World Conference on Photovoltaic Energy Conversion, 2014Google Scholar
  15. C.W. Lan, C. Hsu, K. Nakajima, Handbook of Crystal Growth, Bulk Crystal Growth: Basic Techniques Vol. II, Part a (Elsevier, Amsterdam, 2015), pp. 373–411CrossRefGoogle Scholar
  16. D. Macdonald, A. Cuevas, Sol. Energy Mater. Sol. Cells 65, 509 (2001)CrossRefGoogle Scholar
  17. W. Miller, C. Frank-Rotsch, M. Czupalla, P. Rudolph, Cryst. Res. Technol. 47, 285 (2012)CrossRefGoogle Scholar
  18. A. Muiznieks, A. Rudevics, K. Lacis, H. Riemann, A. Lüdge, F.W. Schulze, B. Nacke, in Proceedings of the International Scientific Colloquium, Modelling for Material, 2006, p. 89Google Scholar
  19. K. Nakajima, R. Murai, K. Morishita, K. Kutsukake, N. Usami, J. Cryst. Growth 344, 6 (2012a)CrossRefGoogle Scholar
  20. K. Nakajima, K. Morishita, R. Murai, K. Kutsukake, J. Cryst. Growth 355, 38 (2012b)CrossRefGoogle Scholar
  21. K. Nakajima, R. Murai, K. Morishita, K. Kutsukake, J. Cryst. Growth 372, 121 (2013)CrossRefGoogle Scholar
  22. K. Nakajima, R. Murai, K. Morishita, Jpn. J. Appl. Phys. 53, 025501–025501 (2014a)CrossRefGoogle Scholar
  23. K. Nakajima, K. Morishita, R. Murai, N. Usami, J. Cryst. Growth 389, 112 (2014b)CrossRefGoogle Scholar
  24. K. Nakajima, K. Morishita, R. Murai, J. Cryst. Growth 405, 44 (2014c)CrossRefGoogle Scholar
  25. K. Nakajima, R. Murai, S. Ono, K. Morishita, M. Kivambe, D.M. Powell, T. Buonassisi, Jpn. J. Appl. Phys. 54, 015504–015501 (2015)CrossRefGoogle Scholar
  26. K. Nakajima, S. Ono, R. Murai, Y. Kaneko, J. Electron. Mater. 45, 2837 (2016a)CrossRefGoogle Scholar
  27. K. Nakajima, S. Ono, Y. Kaneko, R. Murai, K. Shirasawa, T. Fukuda, H. Takato, in Proceedings of the 43th IEEE Photovoltaic Specialists Conference, 2016b, pp. 68–72Google Scholar
  28. K. Nakajima, S. Ono, Y. Kaneko, R. Mura, K. Shirasawa, T. Fukuda, H. Takato, S. Castellanos, M.A. Jensen, A. Youssef, T. Buonassisi, F. Jay, Y. Veschetti, A. Jouini, J. Cryst. Growth 468, 705 (2017)CrossRefGoogle Scholar
  29. J. Nelson, Physics of Solar Cells, Chapter 7 (Imperial College Press, London, 2003)Google Scholar
  30. G. Ratnieks, A. Muiznieks, A. Mühlbauer, J. Cryst. Growth 255, 227 (2003)CrossRefGoogle Scholar
  31. P.S. Ravishankar, Sol. Energy Mater. 12, 361 (1985)CrossRefGoogle Scholar
  32. P.J. Rudolph, Jpn. Assoc. Cryst. Growth 39, 8 (2012)Google Scholar
  33. P. Rudolph, M. Czupalla, B. Lux, F. Kirscht, C. Frank-Rotsch, W. Miller, M. Albrecht, J. Cryst. Growth 318, 249 (2011)CrossRefGoogle Scholar
  34. F. Secco d’Aragona, J. Electrochem. Soc. 119, 948 (1972)CrossRefGoogle Scholar
  35. R.A. Sinton, A. Cuevas, M. Stuckings, in Proceedings of the 25th IEEE Photovoltaic Specialists Conference, 1996, p. 457Google Scholar
  36. W. Zulehner, J. Cryst. Growth 65, 189 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tohoku UniversitySendaiJapan

Section editors and affiliations

  • Kazuo Nakajima
    • 1
  1. 1.Tohoku University, Institute for Materials ResearchTohoku University; FUTURE-PV InnovationFukushimaJapan

Personalised recommendations