Advertisement

Spezielle labortechnische Reaktoren: Lab-on-a-Chip

  • Janina BahnemannEmail author
  • Frank StahlEmail author
  • Thomas ScheperEmail author
Living reference work entry

Latest version View entry history

Part of the Springer Reference Naturwissenschaften book series (SRN)

Zusammenfassung

Mikroreaktorsysteme ermöglichen es auf kleinstem Raum verschiedene Prozessschritte kombiniert ablaufen zu lassen. In diesem Kapitel werden die einzelnen funktionellen Einheiten solcher mikrofluidischen Systeme und deren Herstellungsverfahren – insbesondere die moderne, hochauflösende 3D-Drucktechnik – vorgestellt. Zudem werden Möglichkeiten und Restriktionen des Flüssigkeitstransports, der Durchmischung oder Auftrennung, der Etablierung von definierten Verweilzeit- und Reaktionsstrecken sowie der Integration von Sensoren in Lab-on-a-Chip Systeme aufgezeigt. Abschließend zeigen Beispiele aus der aktuellen Forschung, wie sich mikrofluidische Systeme für analytische Fragestellungen oder in der Bioprozesstechnik einsetzen lassen.

Schlüsselwörter

Mikrosystemtechnik Lab-on-a-Chip 3D-Druckverfahren Bioanalytik Bioprozesstechnik 

Literatur

  1. Amini, H., Lee, W., Di Carlo, D.: Inertial microfluidic physics. Lab Chip. 14, 2739–2761 (2014).  https://doi.org/10.1039/c4lc00128aCrossRefPubMedGoogle Scholar
  2. Au, A.K., Huynh, W., Horowitz, L.F., Folch, A.: 3D-Printed Microfluidics. Angew. Chem. Int. Ed. Engl. 55, 3862–3881 (2016).  https://doi.org/10.1002/anie.201504382CrossRefPubMedGoogle Scholar
  3. Bahnemann, J., Rajabi, N., Fuge, G., Barradas, O.P., Müller, J., Pörtner, R., Zeng, A.P.: A new integrated lab-on-a-chip system for fast dynamic study of mammalian cells under physiological conditions in bioreactor. Cells 2, 349–360 (2013).  https://doi.org/10.3390/cells2020349CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bhattacharjee, N., Urrios, A., Kang, S., Folch, A.: The upcoming 3D-printing revolution in microfluidics. Lab Chip. 16, 1720–1742 (2016).  https://doi.org/10.1039/c6lc00163gCrossRefPubMedPubMedCentralGoogle Scholar
  5. Bruus, H.: Acoustofluidics 1: governing equations in microfluidics. Lab Chip. 11, 3742–3751 (2011).  https://doi.org/10.1039/c1lc20658cCrossRefPubMedGoogle Scholar
  6. Capretto, L., Cheng, W., Hill, M., Zhang, X.: Micromixing within microfluidic devices. Top. Curr. Chem. 304, 27–68 (2011).  https://doi.org/10.1007/128_2011_150CrossRefPubMedGoogle Scholar
  7. Cochrane, A., Albers, H.J., Passier, R., Mummery, C.L., van den Berg, A., Orlova, V.V., van der Meer, A.D.: Advanced in vitro models of vascular biology: human induced pluripotent stem cells and organ-on-chip technology. Adv. Drug Deliv. Rev. (2018).  https://doi.org/10.1016/j.addr.2018.06.007
  8. Hennig, C., Adams, N., Hansen, G.: A versatile platform for comprehensive chip-based explorative cytometry. Cytometry A. 75, 362–370 (2009).  https://doi.org/10.1002/cyto.a.20668CrossRefPubMedGoogle Scholar
  9. Herzog, C., Poehler, E., Peretzki, A.J., Borisov, S.M., Aigner, D., Mayr, T., Nagl, S.: Continuous on-chip fluorescence labelling, free-flow isoelectric focusing and marker-free isoelectric point determination of proteins and peptides. Lab Chip. 16, 1565–1572 (2016).  https://doi.org/10.1039/c6lc00055jCrossRefPubMedGoogle Scholar
  10. Hwang, H.H., Zhu, W., Victorine, G., Lawrence, N., Chen, S.: 3D-Printing of functional biomedical microdevices via light- and extrusion-based approaches. Small Methods. 2 (2018).  https://doi.org/10.1002/smtd.201700277CrossRefGoogle Scholar
  11. Krogmeier, J.R., Schaefer, I., Seward, G., Yantz, G.R., Larson, J.W.: An integrated optics microfluidic device for detecting single DNA molecules. Lab Chip. 7, 1767–1774 (2007).  https://doi.org/10.1039/b710504eCrossRefPubMedGoogle Scholar
  12. Lee, Y.S., Bhattacharjee, N., Folch, A.: 3D-printed Quake-style microvalves and micropumps. Lab Chip. 18, 1207–1214 (2018).  https://doi.org/10.1039/C8LC00001HCrossRefPubMedGoogle Scholar
  13. Maschmeyer, I., et al.: A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip. 15, 2688–2699 (2015).  https://doi.org/10.1039/c5lc00392jCrossRefPubMedGoogle Scholar
  14. Nagel, S.: Micro free-flow isoelectric focusing with integrated optical pH sensors. Eng. Life Sci. (2018).  https://doi.org/10.1002/elsc.201700035CrossRefGoogle Scholar
  15. Ozhikandathil, J., Packirisamy, M.: Nano-islands integrated evanescence-based lab-on-a-chip on silica-on-silicon and polydimethylsiloxane hybrid platform for detection of recombinant growth hormone. Biomicrofluidics 6, 46501 (2012).  https://doi.org/10.1063/1.4757968CrossRefPubMedGoogle Scholar
  16. Parra-Cabrera, C., Achille, C., Kuhn, S., Ameloot, R.: 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors. Chem. Soc. Rev. 47, 209–230 (2018).  https://doi.org/10.1039/c7cs00631dCrossRefPubMedGoogle Scholar
  17. Reichert, J., Csaki, A., Kohler, J.M., Fritzsche, W.: Chip-based optical detection of DNA hybridization by means of nanobead labeling. Anal. Chem. 72, 6025–6029 (2000)CrossRefGoogle Scholar
  18. Sun, S., Yang, M., Kostov, Y., Rasooly, A.: ELISA-LOC: lab-on-a-chip for enzyme-linked immunodetection. Lab Chip. 10, 2093–2100 (2010).  https://doi.org/10.1039/c003994bCrossRefPubMedGoogle Scholar
  19. Viskari, P.J., Landers, J.P.: Unconventional detection methods for microfluidic devices. Electrophoresis 27, 1797–1810 (2006).  https://doi.org/10.1002/elps.200500565CrossRefPubMedGoogle Scholar
  20. Waheed, S., Cabot, J.M., Macdonald, N.P., Lewis, T., Guijt, R.M., Paull, B., Breadmore, M.C.: 3D printed microfluidic devices: enablers and barriers. Lab Chip. 16, 1993–2013 (2016).  https://doi.org/10.1039/c6lc00284fCrossRefPubMedGoogle Scholar
  21. Wang, L., Dandy, D.S.: A microfluidic concentrator for cyanobacteria harvesting. Algal Res. 26 (2017).  https://doi.org/10.1016/j.algal.2017.03.018CrossRefGoogle Scholar
  22. Wu, Y.T., Chen, Y.C.: Sheathless capillary electrophoresis/electrospray ionization mass spectrometry using a pulled bare fused-silica capillary as the electrospray emitter. Anal. Chem. 77, 2071–2077 (2005).  https://doi.org/10.1021/ac048349iCrossRefPubMedGoogle Scholar
  23. Zhang, C., Xing, D., Li, Y.: Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends. Biotechnol. Adv. 25, 483–514 (2007).  https://doi.org/10.1016/j.biotechadv.2007.05.003CrossRefPubMedGoogle Scholar
  24. Zhang, J., Yan, S., Sluyter, R., Li, W., Alici, G., Nguyen, N.T.: Inertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel. Sci. Rep. 4, 4527 (2014).  https://doi.org/10.1038/srep04527CrossRefPubMedPubMedCentralGoogle Scholar
  25. Zhang, J., Yan, S., Yuan, D., Alici, G., Nguyen, N.T., Ebrahimi Warkiani, M., Li, W.: Fundamentals and applications of inertial microfluidics: a review. Lab Chip. 16, 10–34 (2016).  https://doi.org/10.1039/c5lc01159kCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Technical ChemistryLeibniz University HannoverHannoverDeutschland

Personalised recommendations