Advertisement

Spezielle labortechnische Reaktoren: Hochdurchsatz-Reaktionstechnik

  • Klaus Stöwe
Living reference work entry
Part of the Springer Reference Naturwissenschaften book series (SRN)

Zusammenfassung

In diesem Kapitel des Handbuchs Chemischer Reaktoren werden Ansätze zur Parallelisierung von Reaktoren mit dem Ziel der Erhöhung der Effizienz der Testverfahren, Reduktion des zeitlichen und finanziellen Aufwandes für die Testung, die Erhöhung der Reproduzierbarkeit der Ergebnisse und Wissensgenerierung beschrieben. Wie jedes experimentelle Vorgehen bedarf auch die Hochdurchsatz-Experimentation einer sehr sorgfältigen Planung der Versuche im Sinne eines Design of Experiment (DoE). Im Hochdurchsatz-Workflow werden anschließend die Phasen Primär- und Sekundärscreening solange durchlaufen, bis ein entsprechendes Entwicklungsziel erreicht worden ist. Parallelisiert werden können praktisch alle konventionellen Reaktortypen. Oberster Grundsatz bei der Planung und Entwicklung von Multireaktorsystemen ist ein völlig gleichartiges Verhalten aller Reaktoren des Parallelsystems, damit eine Vergleichbarkeit der Ergebnisse gegeben ist. Im Stadium der Realisierung eines Parallelisierungskonzeptes muss daher das Reaktorsystem immer gegen konventionelle Anlagen validiert werden. Vorgestellt werden Beispiele für Parallelreaktorkonzepte aus den Bereichen der mikrostrukturierten Hochdurchsatzreaktoren, der parallelen Strömungsrohrreaktoren, der parallelen Satzreaktoren und der photochemischen Parallelreaktoren.

Schlüsselwörter

Hochdurchsatz-Testung Hochdurchsatz-Technologien Parallelisierung Automatisierung Reaktionstechnik Mikrofluidik Gasphasenströmungsreaktoren Satzreaktoren Katalysatortestung Prozessoptimierung 

Literatur

  1. AMTECH: SPR-16. http://www.amtech-htt.de/de/products.spr16.html (2018a). Zugegriffen am 24.05.2018
  2. AMTECH: SWITCH-16. http://www.amtech-htt.de/de/products.switch16.html (2018b). Zugegriffen am 22.05.2018
  3. AMTECH: SPR 100/4. http://www.amtech-htt.de/de/products.spr100.html (2018c). Zugegriffen am 24.05.2018
  4. Avantium: Flowrence. https://www.avantium.com/rct/ (2018a). Zugegriffen am 22.05.2018
  5. Avantium: Publikationen. https://www.avantium.com/publications/ (2018b). Zugegriffen am 22.05.2018
  6. Bassou, B., Guilhaume, N., Iojoiu, E.E., Farrusseng, D., Lombaert, K., Bianchi, D., Mirodatos, C.: High-throughput approach to the catalytic combustion of diesel soot II: Screening of oxide-based catalysts. Catal. Today. 159, 138–143 (2010)CrossRefGoogle Scholar
  7. Baumes, L.A., Serra, J.M., Serna, P., Corma, A.: Support vector machines for predictive modeling in heterogeneous catalysis: A comprehensive introduction and overfitting investigation based on two real applications. J. Comb. Chem. 8, 583–596 (2006)CrossRefPubMedCentralPubMedGoogle Scholar
  8. Bellefon, C. de, Tanchoux, N., Caravieilhes, S., Grenoullet, P., Hessel, V.: Microreactors for dynamic, high-throughput screening of fluid/liquid molecular catalysis. Angew. Chem. Int. Ed. 39, 3442–3445 (2000)Google Scholar
  9. Bergh, S., et al.: Combinatorial heterogeneous catalysis: Oxidative dehydrogenation of ethane to ethylene, selective oxidation of ethane to acetic acid, and selective ammoxidation of propane to acrylonitrile. Top. Catal. 23, 65–79 (2003a)CrossRefGoogle Scholar
  10. Bergh, S., et al.: Gas phase oxidation of ethane to acetic acid using high-throughput screening in a massively parallel microfluidic reactor system. Appl. Catal. A Gen. 254, 67–76 (2003b)CrossRefGoogle Scholar
  11. Breuer, C., Lucas, M., Schuetze, F.W., Claus, P.: Implementation of the multi-channel monolith reactor in an optimisation procedure for heterogeneous oxidation catalysts based on genetic algorithms. Comb. Chem. High Throughput Screen. 10, 59–70 (2007)CrossRefPubMedCentralPubMedGoogle Scholar
  12. Cao, C., Palo, D.R., Tonkovich, A.L., Wang, Y.: Catalyst screening and kinetic studies using microchannel reactors. Catal. Today 125, 29–33 (2007)CrossRefGoogle Scholar
  13. Castillo, F.A., Sweeney, J., Margl, P., Zirk, W.: Split-plot experimental designs for combinatorial and high-throughput experimentation. QSAR Comb. Sci. 24, 38–44 (2005)CrossRefGoogle Scholar
  14. Cawse, J.N.: Experimental Design for High Throughput Materials Development. Wiley, Chichester (2003)Google Scholar
  15. Cetoni: https://www.cetoni.de/produkte/led-array-celed-96/ (2018). Zugegriffen am 25.05.2018
  16. Chan, E.M., Xu, C., Mao, A.W., Han, G., Owen, J.S., Cohen, B.E., Milliron, D.J.: Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. Nano Lett. 10, 1874–1885 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  17. Chemspeed: Autoplant. https://www.chemspeed.com/multiplant-autoplant-flowchem/ (2018a) . Zugegriffen am 24.05.2018
  18. Chemspeed: ISYNTH. https://www.chemsped.com/technologies/reactors-vessels-vials/ (2018b). Zugegriffen am 25.05.2018
  19. Cline, E.D., Adamson, S.E., Bernhard, S.: Homogeneous catalytic system for photoinduced hydrogen production utilizing iridium and rhodium complexes. Inorg. Chem. 47, 10378–10388 (2008)CrossRefPubMedCentralPubMedGoogle Scholar
  20. Curtin, P.N., Tinker, L.L., Burgess, C.M., Cline, E.D., Bernhard, S.: Structure-activity correlations among iridium(III) photosensitizers in a robust water-reducing system. Inorg. Chem. 48, 10498–10506 (2009)CrossRefPubMedCentralPubMedGoogle Scholar
  21. Cygan, Z.T., Cabral, J.T., Beers, K.L., Amis, E.J.: Microfluidic platform for the generation of organic-phase microreactors. Langmuir. 21, 3629–3634 (2005)CrossRefPubMedCentralPubMedGoogle Scholar
  22. Cypes, S., et al.: High throughput screening of low temperature CO oxidation catalysts using IR thermography. Comb. Chem. High Throughput Screen. 10, 25–35 (2007)CrossRefPubMedCentralPubMedGoogle Scholar
  23. Dellamorte, J.C., Vijay, R., Snively, C.M., Barteau, M.A., Lauterbach, J.: High-throughput reactor system with individual temperature control for the investigation of monolith catalysts. Rev. Sci. Instrum. 78, 072211/072211–072211/072217 (2007)CrossRefPubMedCentralPubMedGoogle Scholar
  24. D’Netto, G.A., Pawlicki, P.C., Schmitz, R.A.: Thermographic studies of catalytic reactions. Proc. SPIE-Int. Soc. Opt. Eng. 520, 84–91 (1985)Google Scholar
  25. Durand, J., et al.: Long-lived palladium catalysts for CO/vinyl arene polyketones synthesis: A solution to deactivation problems. Chem. Eur. J. 12, 7639–7651 (2006)CrossRefPubMedCentralPubMedGoogle Scholar
  26. Farrusseng, D., Klanner, C., Baumes, L., Lengliz, M., Mirodatos, C., Schueth, F.: Design of discovery libraries for solids based on QSAR models. QSAR Comb. Sci. 24, 78–93 (2005)CrossRefGoogle Scholar
  27. Fuessl, S., Trapp, O.: Integration of on-column catalysis and EKC analysis: Investigation of enantioselective sulfoxidations. Electrophoresis. 33, 1060–1067 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  28. Furka, A., Sebestyen, F., Asgedom, M., Dibo, G.: Cornucopia of peptides by synthesis, S. 47. Prague (1988)Google Scholar
  29. Furka, A., Sebestyen, F., Asgedom, M., Dibo, G.: General method for rapid synthesis of multicomponent peptide mixtures. Int. J. Pept. Protein Res. 37, 487–493 (1991)CrossRefPubMedCentralPubMedGoogle Scholar
  30. Gaertner, A., Lenk, T., Kiemel, R., Casu, S., Breuer, C., Stoewe, K.: High-throughput screening approach to identify new catalysts for total oxidation of methane from gas fueled lean burn engines. Top. Catal. 59, 1071–1075 (2016)CrossRefGoogle Scholar
  31. Gaudillere, C., Vernoux, P., Mirodatos, C., Caboche, G., Farrusseng, D.: Screening of ceria-based catalysts for internal methane reforming in low temperature SOFC. Catal. Today 157, 263–269 (2010)Google Scholar
  32. Georgiades, G., Self, V.A., Sermon, P.A.: IR-emission analysis of temperature profiles of Pt/SiO2 catalysts in exothermic reactions. Angew. Chem. 99, 1050–1052 (1987)CrossRefGoogle Scholar
  33. Geysen, H.M., Meloen, R.H., Barteling, S.J.: Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. U. S. A. 81, 3998–4002 (1984)CrossRefPubMedCentralPubMedGoogle Scholar
  34. Gobolos, S., Hegedus, M., Borbath, I., Margitfalvi, J.L.: Hydrogenolysis of butyl acetate to butanol over naphtha reforming type catalysts in conventional and high throughput slurry phase reactors. Chem. Ind. (Boca Raton, FL, US). 104, 91–100 (2005)Google Scholar
  35. Gobolos, S., Banka, Z., Toth, Z., Szammer, J., Margitfalvi, J.L.: Highly selective preparation of trans-4-aminocyclohexanecarboxylic acid from cis-isomer over Raney nickel catalyst. Chem. Ind. (Boca Raton, FL, US). 115, 45–53 (2007)Google Scholar
  36. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA (1989)Google Scholar
  37. Goldsmith, J.I., Hudson, W.R., Lowry, M.S., Anderson, T.H., Bernhard, S.: Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. J. Am. Chem. Soc. 127, 7502–7510 (2005)CrossRefPubMedCentralPubMedGoogle Scholar
  38. Grasser, J.A., Muggli, D.S.: A high-throughput reaction system to measure the gas-phase photocatalytic oxidation activity of TiO2 nanotubes. Rev. Sci. Instrum. 80, 075106/075101–075106/075110 (2009)CrossRefGoogle Scholar
  39. Groen, J.C., Abello, S., Villaescusa, L.A., Perez-Ramirez, J.: Mesoporous beta zeolite obtained by desilication. Microporous Mesoporous Mater. 114, 93–102 (2008)CrossRefGoogle Scholar
  40. Guram, A., Hagemeyer, A., Lugmair, C.G., Turner, H.W., Volpe Jr., A.F., Weinberg, W.H., Yaccato, K.: Application of high throughput screening to heterogeneous liquid and gas phase oxidation catalysis. Adv. Synth. Catal. 346, 215–230 (2004)CrossRefGoogle Scholar
  41. Hahndorf, I., Buyevskaya, O., Langpape, M., Grubert, G., Kolf, S., Guillon, E., Baerns, M.: Experimental equipment for high-throughput synthesis and testing of catalytic materials. Chem. Eng. J. 89, 119–125 (2002).  https://doi.org/10.1016/S1385-8947(02)00005-0CrossRefGoogle Scholar
  42. Hanak, J.J.: The „multiple-sample concept“ in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci. 5, 964–971 (1970)CrossRefGoogle Scholar
  43. Hanak, J.J.: Multiple-sample concept: The forerunner of combinatorial materials science. In: Xiang, X.-D., Takeuchi, I. (Hrsg.) Combinatorial Materials Science, S. 7–34. Marcel-Dekker Inc, New York (2003a)Google Scholar
  44. Hanak, J.J.: A quantum leap in the development of new materials and devices. Appl. Surf. Sci. 223, 1–8 (2003b)CrossRefGoogle Scholar
  45. Harmon, L.: Experiment planning for combinatorial materials discovery. J. Mater. Sci. 38, 4479–4485 (2003)CrossRefGoogle Scholar
  46. Hatch, A.C., Fisher, J.S., Pentoney, S.L., Yang, D.L., Lee, A.P.: Tunable 3D droplet self-assembly for ultra-high-density digital micro-reactor arrays. Lab Chip. 11, 2509–2517 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  47. Hendershot, R.J., Vijay, R., Feist, B.J., Snively, C.M., Lauterbach, J.: Multivariate and univariate analysis of infrared imaging data for high-throughput studies of NH3 decomposition and NOx storage and reduction catalysts. Meas. Sci. Technol. 16, 302–308 (2005)CrossRefGoogle Scholar
  48. Herk, D. van, Castano, P., Makkee, M., Moulijn, J.A., Kreutzer, M.T.: Catalyst testing in a multiple-parallel, gas-liquid, powder-packed bed microreactor Appl. Catal. A 365,199–206 (2009)Google Scholar
  49. Hessel, V., Kralisch, D., Kockmann, N.: Novel Process Windows: Innovative Gates to Intensified & Sustainable Chemical Processes. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2015)Google Scholar
  50. Hoffmann, C., Schmidt, H.W., Schuth, F.: A multipurpose parallelized 49-channel reactor for the screening of catalysts: Methane oxidation as the example reaction. J. Catal. 198, 348–354 (2001)CrossRefGoogle Scholar
  51. Holena, M., Baerns, M.: Artificial neural networks in catalyst development. In: Cawse, J.N. (Hrsg.) Experimental Design for Combinatorial and High-Throughput Materials Development, S. 163–202. Wiley, New York (2003)Google Scholar
  52. Holzwarth, A., Schmidt, H.W., Maier, W.F.: Detection of catalytic activity in combinatorial libraries of heterogeneous catalysts by IR thermography. Angew. Chem. Int. Ed. 37, 2644–2647 (1998)CrossRefGoogle Scholar
  53. Hoogenboom, R., Meier, M.A.R., Schubert, U.S.: Combinatorial methods, automated synthesis and high-throughput screening in polymer research: Past and present. Macromol. Rapid Commun. 24, 15–32 (2003)CrossRefGoogle Scholar
  54. Houghten, R.A.: General method for the rapid solid-phase synthesis of large numbers of peptides: Specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. U. S. A. 82, 5131–5135 (1985)CrossRefPubMedCentralPubMedGoogle Scholar
  55. Huybrechts, W., Mijoin, J., Jacobs, P.A., Martens, J.A.: Development of a fixed-bed continuous-flow high-throughput reactor for long-chain n-alkane hydroconversion. Appl. Catal. A Gen. 243, 1–13 (2003).  https://doi.org/10.1016/S0926-860X(02)00536-7CrossRefGoogle Scholar
  56. Iojoiu, E.E., et al.: High-throughput approach to the catalytic combustion of diesel soot. Catal. Today 137, 103–109 (2008)CrossRefGoogle Scholar
  57. Jandeleit, B., Schaefer, D.J., Powers, T.S., Turner, H.W., Weinberg, W.H.: Combinatorial materials science and catalysis. Angew. Chem. Int. Ed. 38, 2494–2532 (1999)CrossRefGoogle Scholar
  58. Kashid, M.N., Renken, A., Kiwi-Minsker, L.: Influence of flow regime on mass transfer in different types of microchannels. Ind. Eng. Chem. Res. 50, 6906–6914 (2011)CrossRefGoogle Scholar
  59. Kellow, J., Wolf, E.E.: In-situ IR thermography studies of reaction dynamics during carbon monoxide oxidation on rhodium/silica catalysts. Catal. Today 9, 47–51 (1991)CrossRefGoogle Scholar
  60. Khnayzer, R.S., Martin, D.R., Codding, C.L., Castellano, F.N.: Parallelization of photocatalytic gas-producing reactions. Rev. Sci. Instrum. 86, 034101/034101–034101/034107 (2015)CrossRefPubMedCentralPubMedGoogle Scholar
  61. Kim, T.N., Campbell, K., Groisman, A., Kleinfeld, D., Schaffer, C.B.: Femtosecond laser-drilled capillary integrated into a microfluidic device. Appl. Phys. Lett. 86, 201106/201101–201106/201103 (2005)Google Scholar
  62. Klein, J. et al.: The first use of the split&pool: Principle for the synthesis of inorganic solids. Abstracts of Papers, 224th ACS National Meeting, Boston, MA, United States, August 18–22 (2002)Google Scholar
  63. Klein, J., Zech, T., Newsam, J.M., Schunk, S.A.: Application of a novel Split&Pool-principle for the fully combinatorial synthesis of functional inorganic materials. Appl. Catal. A. 254, 121–131 (2003)CrossRefGoogle Scholar
  64. Kraemer, M., Duisberg, M., Stoewe, K., Maier, W.F.: Highly selective CO methanation catalysts for the purification of hydrogen-rich gas mixtures. J. Catal. 251, 410–422 (2007)CrossRefGoogle Scholar
  65. Kubanek, P., Busch, O., Thomson, S., Schmidt, H.W., Schueth, F.: Imaging reflection IR spectroscopy as a tool to achieve higher integration for high-throughput experimentation in catalysis research. J. Comb. Chem. 6, 420–425 (2004a)CrossRefPubMedCentralPubMedGoogle Scholar
  66. Kubanek, P., Schmidt, H.W., Spliethoff, B., Schueth, F.: Parallel IR spectroscopic characterization of CO chemisorption on Pt loaded zeolites. Microporous Mesoporous Mater. 77, 89–96 (2004b)CrossRefGoogle Scholar
  67. Kusakabe, K., Tokunaga, K., Zhao, G., Sotowa, K.I., Morooka, S.: Fabrication of parallel microchannel reactors for use in catalyst testing. J. Chem. Eng. Jpn. 35, 914–917 (2002)CrossRefGoogle Scholar
  68. Lasko, S.S., Hendershot, R.J., Fu, Y., Fellmann, M.F., Oskarsdottir, G., Snively, C.M., Lauterbach, J.: Spectroscopic imaging in the mid-infrared applied to high-throughput studies of supported catalyst libraries. In: Potyrailo, R.A., Amis, E.J. (Hrsg.) High-Throughput Analysis, S. 77–91. Kluwer Academic/Plenum Publishers, New York, USA (2003)Google Scholar
  69. Lin, R., Ma, X., Fielitz, T.R., Obare, S.O., Ofoli, R.Y.: Facile hydrogenation of carbon-carbon double bonds using catalytic noble nanoparticles immobilized in microfluidic reactors. Catal. Commun. 18, 168–175 (2012)CrossRefGoogle Scholar
  70. Loskyll, J., Stoewe, K., Maier, W.F.: Infrared thermography as a high-throughput tool in catalysis research. ACS Comb. Sci. 14, 295–303 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  71. Loskyll, J., Stoewe, K., Maier, W.F.: Search for new catalysts for the oxidation of SO2. ACS Comb. Sci. 15, 464–474 (2013)CrossRefPubMedCentralPubMedGoogle Scholar
  72. Lucas, M., Claus, P.: High throughput screening in monolith reactors for total oxidation reactions. Appl. Catal. A. 254, 35–43 (2003)CrossRefGoogle Scholar
  73. Maier, W.F., Stoewe, K., Sieg, S.: Combinatorial and high-throughput materials science. Angew. Chem. Int. Ed. 46, 6016–6067, S6016/6011 (2007)Google Scholar
  74. Maj, A.M., Heyte, S., Araque, M., Dumeignil, F., Paul, S., Suisse, I., Agbossou-Niedercorn, F.: First catalytic asymmetric hydrogenation of quinoxaline-2-carboxylates. Tetrahedron. 72, 1375–1380 (2016)CrossRefGoogle Scholar
  75. Marengo, S., Raimondini, G., Comotti, P.: Investigation on adsorption and acid-base properties of solid catalysts by infrared thermography. Stud. Surf. Sci. Catal. 75, 2573–2576 (1993)CrossRefGoogle Scholar
  76. McCormick, T.M., Han, Z., Weinberg, D.J., Brennessel, W.W., Holland, P.L., Eisenberg, R.: Impact of ligand exchange in hydrogen production from cobaloxime-containing photocatalytic systems. Inorg. Chem. 50, 10660–10666 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  77. Mestl, G.: High throughput development of selective oxidation catalysts at sud-chemie. Comb. Chem. High Throughput Screen. 15, 114–122 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  78. Mills, P.L., Nicole, J.F.: Multiple Automated Reactor Systems (MARS). 1. A novel reactor system for detailed testing of gas-phase heterogeneous oxidation catalysts. Ind. Eng. Chem. Res. 44, 6435–6452 (2005a)CrossRefGoogle Scholar
  79. Mills, P.L., Nicole, J.F.: Multiple Automated Reactor Systems (MARS). 2. Effect of microreactor configurations on homogeneous gas-phase and wall-catalyzed reactions for 1,3-butadiene oxidation. Ind. Eng. Chem. Res. 44, 6453–6465 (2005b)CrossRefGoogle Scholar
  80. Moonen, R., Alles, J., Ras, E., Harvey, C., Moulijn, J.A.: Performance testing of hydrodesulfurization catalysts using a single-pellet-string reactor. Paper presented at the Chemical Engineering & Technology, 07/10/2017 (2017)Google Scholar
  81. Morra, G., et al.: High-throughput gas phase transient reactor for catalytic material characterization and kinetic studies. Chem. Eng. J. (Amsterdam, Neth). 138, 379–388 (2008)Google Scholar
  82. Moulijn, J.A., Perez-Ramirez, J., Berger, R.J., Hamminga, G., Mul, G., Kapteijn, F.: High-throughput experimentation in catalyst testing and in kinetic studies for heterogeneous catalysis. Catal. Today 81, 457–471 (2003)CrossRefGoogle Scholar
  83. Mueller, C., Lopez, L.G., Kooijman, H., Spek, A.L., Vogt, D.: Chiral bidentate phosphabenzene-based ligands: Synthesis, coordination chemistry, and application in Rh-catalyzed asymmetric hydrogenations. Tetrahedron Lett. 47, 2017–2020 (2006)CrossRefGoogle Scholar
  84. Murakami, S., Ohtaki, K., Matsumoto, S., Inoue, T.: Parallelization of catalytic packed-bed microchannels with pressure-drop microstructures for gas-liquid multiphase reactions. Jpn. J. Appl. Phys. 51, 06FK11/01–06FK11/02 (2012)CrossRefGoogle Scholar
  85. Nagy, A.J.: Implementation of high throughput experimentation techniques for kinetic reaction testing. Comb. Chem. High Throughput Screen. 15, 189–198 (2012)CrossRefPubMedCentralPubMedGoogle Scholar
  86. Nandi, S., Mukherjee, P., Tambe, S.S., Kumar, R., Kulkarni, B.D.: Reaction modelling and optimization using neural networks and genetic algorithms: Case study involving TS-1 Catalyzed Hydroxylation of benzene. Ind. Eng. Chem. Res. 41, 2159–2169 (2002)CrossRefGoogle Scholar
  87. Oh, K.S., Woo, S.I.: Chemiluminescence analyzer of NOx as a high-throughput screening tool in selective catalytic reduction of NO. Sci. Technol. Adv. Mater. 12, 054211/054211–054211/054217 (2011)PubMedPubMedCentralGoogle Scholar
  88. Oh, K.S., Park, Y.K., Woo, S.I.: Highly reliable 64-channel sequential and parallel tubular reactor system for high-throughput screening of heterogeneous catalysts. Rev. Sci. Instrum. 76, 062219/062211–062219/062217 (2005)CrossRefGoogle Scholar
  89. Olong, N.E., Stoewe, K., Maier, W.F.: A combinatorial approach for the discovery of low temperature soot oxidation catalysts. Appl. Catal. B. 74, 19–25 (2007)CrossRefGoogle Scholar
  90. Paul, J.S., Jacobs, P.A., Weiss, P.A., Maier, W.F.: Combinatorial discovery of new catalysts for the selective oxidation of isobutane. Appl. Catal. A. 265, 185–193 (2004)CrossRefGoogle Scholar
  91. Paul, J.S., Janssens, R., Denayer Joeri, F.M., Baron, G.V., Jacobs, P.A.: Optimization of MoVSb oxide catalyst for partial oxidation of isobutane by combinatorial approaches. J. Comb. Chem. 7, 407–413 (2005)CrossRefPubMedCentralPubMedGoogle Scholar
  92. Pawlicki, P.C., Schmitz, R.A.: Spatial effects on supported catalysts. Chem. Eng. Prog. 83, 40–45 (1987)Google Scholar
  93. Perez-Ramirez, J., Berger, R.J., Mul, G., Kapteijn, F., Moulijn, J.A.: The six-flow reactor technology A review on fast catalyst screening and kinetic studies. Catal. Today 60, 93–109 (2000)CrossRefGoogle Scholar
  94. Potyrailo, R., Rajan, K., Stoewe, K., Takeuchi, I., Chisholm, B., Lam, H.: Combinatorial and high-throughput screening of materials libraries: Review of state of the art. ACS Comb. Sci. 13, 579–633 (2011)CrossRefPubMedCentralPubMedGoogle Scholar
  95. Ramnarayanan, R., et al.: Directed-sorting method for synthesis of bead-based combinatorial libraries of heterogeneous catalysts. J. Comb. Chem. 8, 199–212 (2006)CrossRefPubMedCentralPubMedGoogle Scholar
  96. Reetz, M.T., Becker, M.H., Kuhling, K.M., Holzwarth, A.: Time-resolved IR-thermographic detection and screening of enantioselectivity in catalytic reactions. Angew. Chem. Int. Ed. 37, 2647–2650 (1998)CrossRefGoogle Scholar
  97. Reis, N.M., Li Puma, G.: A novel microfluidic approach for extremely fast and efficient photochemical transformations in fluoropolymer microcapillary films. Chem. Commun. (Cambridge, UK). 51, 8414–8417 (2015)CrossRefGoogle Scholar
  98. Rodemerck, U., Ignaszewski, P., Lucas, M., Claus, P.: Parallel synthesis and fast catalytic testing of catalyst libraries for oxidation reactions. Chem. Eng. Technol. 23, 413–416 (2000).  https://doi.org/10.1002/(SICI)1521-4125(200005)23:5<413::AID-CEAT413>3.0.CO;2-KCrossRefGoogle Scholar
  99. Saalfrank, J.W., Maier, W.F.: Doping, selection and composition spreads, a combinatorial strategy for the discovery of new mixed oxide catalysts for low-temperature CO oxidation. C. R. Chim. 7, 483–494 (2004)CrossRefGoogle Scholar
  100. Salaheldin, A.M., et al.: Automated synthesis of quantum dot nanocrystals by hot injection: Mixing induced self-focusing. Chem. Eng. J. (Amsterdam, Neth). 320, 232–243 (2017)Google Scholar
  101. Schunk, S.A., Kolb, P., Sundermann, A., Zech, T., Klein, J.: Expanding the scope of combinatorial synthesis of inorganic solids: Application of the Split & Pool principle for the screening of functional materials. Comb. High-Throughput Discovery Optim. Catal. Mater. 11, 17–45 (2007)Google Scholar
  102. Senkan, S.M.: High-throughput screening of solid-state catalyst libraries. Nature (London) 394, 350–353 (1998)CrossRefGoogle Scholar
  103. Serra, J.M., Chica, A., Corma, A.: Development of a low temperature light paraffin isomerization catalysts with improved resistance to water and sulphur by combinatorial methods. Appl. Catal. A Gen. 239, 35–42 (2003)CrossRefGoogle Scholar
  104. Seyler, M., Stoewe, K., Maier, W.F.: New hydrogen-producing photocatalysts-A combinatorial search. Appl. Catal. B. 76, 146–157 (2007)CrossRefGoogle Scholar
  105. Siegle, A.F., Trapp, O.: Implementation of Hadamard encoding for rapid multisample analysis in liquid chromatography. J. Sep. Sci. 38, 3839–3844 (2015)CrossRefPubMedCentralPubMedGoogle Scholar
  106. Stockinger, S., Troendlin, J., Rominger, F., Trapp, O.: On-column reaction set-up for high-throughput screenings and mechanistic investigations. Adv. Synth. Catal. 357, 3377 (2015)CrossRefGoogle Scholar
  107. Stoewe, K., Ausfelder, F.: A practical modular course of combinatorial and high-throughput methods for use in academic teaching laboratories. Chem. Ing. Tech. 85, 919–925 (2013)CrossRefGoogle Scholar
  108. Stoewe, K., Hammes, M., Valtchev, M., Roth, M.B., Maier, W.F.: Parallel fixed bed microreactors for high-throughput screening with special focus on high corrosion resistance and new deacon catalysts for chlorine production. In: Hagemeyer, A., Volpe, A.F. (Hrsg.) Modern Applications of High Throughput R&D in Heterogeneous Catalysis, S. 113–168. Bentham Science, Sharjah (2014)Google Scholar
  109. Su, H., Yeung, E.S.: High-throughput screening of heterogeneous catalysts by laser-induced fluorescence imaging. J. Am. Chem. Soc. 122, 7422–7423 (2000)CrossRefGoogle Scholar
  110. Su, H., Yeung, E.S.: Combinatorial study of zeolites in catalyzing the acylation of benzene via laser-induced fluorescence imaging. Appl. Spectrosc. 56, 1044–1047 (2002)CrossRefGoogle Scholar
  111. Su, H., Hou, Y., Houk, R.S., Schrader, G.L., Yeung, E.S.: Combinatorial screening of heterogeneous catalysts in selective oxidation of naphthalene by laser-induced fluorescence imaging. Anal. Chem. 73, 4434–4440 (2001)CrossRefPubMedCentralPubMedGoogle Scholar
  112. Sun, Y., Chan, B.C., Ramnarayanan, R., Leventry, W.M., Mallouk, T.E., Bare, S.R., Willis, R.R.: Split-pool method for synthesis of solid-state material combinatorial libraries. J. Comb. Chem. 4, 569–575 (2002)CrossRefPubMedCentralPubMedGoogle Scholar
  113. Thinon, O., Diehl, F., Avenier, P., Schuurman, Y.: Screening of bifunctional water-gas shift catalysts. Catal. Today 137, 29–35 (2008)CrossRefGoogle Scholar
  114. Tibiletti, D., de Graaf, E.A.B., Teh, S.P., Rothenberg, G., Farrusseng, D., Mirodatos, C.: Selective CO oxidation in the presence of hydrogen: Fast parallel screening and mechanistic studies on ceria-based catalysts. J. Catal. 225, 489–497 (2004)Google Scholar
  115. Trapp, O.: Boosting the throughput of separation techniques by „multiplexing“. Angew. Chem. Int. Ed. 46, 5609–5613 (2007)Google Scholar
  116. Trapp, O.: High-throughput monitoring of interconverting stereoisomers and catalytic reactions. Chim. Oggi. 26, 26–28 (2008)Google Scholar
  117. Trapp, O.: Investigation of modulation parameters in multiplexing gas chromatography. J. Chromatogr. A. 1217, 6640–6645 (2010)CrossRefPubMedCentralPubMedGoogle Scholar
  118. Trapp, O., Weber, S.K., Bauch, S., Baecker, T., Hofstadt, W., Spliethoff, B.: High-throughput kinetic study of hydrogenation over palladium nanoparticles: Combination of reaction and analysis. Chem. Eur. J. 14, 4657–4666 (2008)CrossRefPubMedCentralPubMedGoogle Scholar
  119. Urschey, J., Kuehnle, A., Maier, W.F.: Combinatorial and conventional development of novel dehydrogenation catalysts. Appl. Catal. A. 252, 91–106 (2003)CrossRefGoogle Scholar
  120. Weidenhof, B., et al.: High-throughput screening of nanoparticle catalysts made by flame spray pyrolysis as hydrocarbon/NO oxidation catalysts. J. Am. Chem. Soc. 131, 9207–9219 (2009)CrossRefPubMedCentralPubMedGoogle Scholar
  121. Wu, T., Hirata, K., Suzuki, H., Xiang, R., Tang, Z., Yomo, T.: Shrunk to femtolitre: Tuning high-throughput monodisperse water-in-oil droplet arrays for ultra-small micro-reactors. Appl. Phys. Lett. 101, 074108/074101–074108/074104 (2012)Google Scholar
  122. Xu, B.B., Zhang, Y.L., Wei, S., Ding, H., Sun, H.B.: On-chip catalytic microreactors for modern catalysis research. ChemCatChem. 5, 2091–2099 (2013)CrossRefGoogle Scholar
  123. Yi, J.P., Fan, Z.G., Jiang, Z.W., Li, W.S., Zhou, X.P.: High-throughput parallel reactor system for propylene oxidation catalyst investigation. J. Comb. Chem. 9, 1053–1059 (2007)CrossRefPubMedCentralPubMedGoogle Scholar
  124. Zech, T., Klein, J., Schunk, S.A., Johann, T., Schueth, F., Kleditzsch, S., Deutschmann, O.: Miniaturized reactor concepts and advanced analytics for primary screening in high-throughput experimentation. In: Potyrailo, R.A., Amis, E.J. (Hrsg.) High-Throughput Analysis, S. 491–523. Kluwer Academic/Plenum Publishers, New York, USA (2003)Google Scholar
  125. Zech, T., Bohner, G., Klein, J.: High-throughput screening of supported catalysts in massively parallel single-bead microreactors: Workflow aspects related to reactor bonding and catalyst preparation. Catal. Today 110, 58–67 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Chemische TechnologieTechnische Universität ChemnitzChemnitzDeutschland

Personalised recommendations