Advertisement

Reaktoren für Fluid-Fluid-Reaktionen: Strahldüsenreaktoren

  • Jens Dreimann
  • Arno Behr
  • Andreas J. Vorholt
Living reference work entry
Part of the Springer Reference Naturwissenschaften book series (SRN)

Zusammenfassung

Dieses Kapitel informiert kurz über die theoretischen Grundlagen des Freistrahlreaktors und des Strahldüsenumlaufreaktors (Jet-Loop-Reaktor). Die Vorteile dieser Reaktoren werden an Beispielen aus der heterogenen und homogenen Katalyse sowie aus der Biokatalyse erläutert.

Schlüsselwörter

Düsen Einstoffdüse Freistrahlreaktor Intensivierung Jet-Loop-Reaktor Katalyse Mehrphasenreaktionen Strahldüsen Strahlschlaufenreaktor Zweistoffdüse 

Literatur

  1. Baerns, M., Behr, A., Brehm, A., Gmehling, J., Hinrichsen, K.-O., Hofmann, H., Onken, U., Palkovits, R., Renken, A.: Technische Chemie, 2. Aufl. Wiley-VCH, Weinheim (2013)Google Scholar
  2. Behr, A., Becker, M.: Multiphase catalysis in jetloop-reactors. Chem. Eng. Trans. 17, 141–144 (2009).  https://doi.org/10.3303/CET0917024CrossRefGoogle Scholar
  3. Behr, A., Becker, M., Dostal, J., Kohlmann, D.: Hydrodynamik und Verweilzeitverhalten eines Düsenumlaufreaktors für den Einsatz in der Mehrphasenkatalyse. Chem. Ing. Tech. 80(10), 1501–1508 (2008).  https://doi.org/10.1002/cite.200800080CrossRefGoogle Scholar
  4. Behr, A., Becker, M., Dostal, J.: Bubble-size distributions and interfacial areas in a jetloop reactor for multiphase catalysis. Chem. Eng. Sci. 64(12), 2934–2940 (2009).  https://doi.org/10.1016/j.ces.2009.03.031CrossRefGoogle Scholar
  5. Behr, A., Vorholt, A.J., Ostrowski, K.A., Seidensticker, T.: Towards resource efficient chemistry: tandem reactions with renewables. Green Chem. 16(3), 982–1006 (2014).  https://doi.org/10.1039/C3GC41960FCrossRefGoogle Scholar
  6. Berty, J.M.: Reactor for vapor-phase catalytic studies. Chem. Eng. Prog. 70, 78–84 (1974)Google Scholar
  7. Blenke, H.: Loop reactors. In: Aiba, S., Atkinson, B., Böing, J., Bylinkina, E., Dellweg, H., Demain, A.L., Finn, R., Fukui, S., Kieslich, K., Lafferty, R.M., Nyiri, L.K., Rehm, H.J., Rogers, P.L., Sahm, H., Schmidt-Lorenz, W., Schügerl, K., Suomalainen, H., Tsao, G.T., Ghose, T.K., Blakebrough, N., Fiechter, A. (Hrsg.) Advances in Biochemical Engineering. Advances in Biochemical Engineering/Biotechnology, Bd. 13, S. 121–214. Springer, Berlin/Heidelberg (1979)Google Scholar
  8. Blenke, H., Bohner, K., Vollmerhaus, E.: Untersuchungen zur Berechnung des Betriebsverhaltens von Treibstrahlförderern. Chem. Ing. Tech. 35(3), 201–208 (1963).  https://doi.org/10.1002/cite.330350315CrossRefGoogle Scholar
  9. Blenke, H., Bohner, K., Schuster, S.: Beitrag zur optimalen Gestaltung chemischer Reaktoren. Chem. Ing. Tech. 37(3), 289–294 (1965).  https://doi.org/10.1002/cite.330370322CrossRefGoogle Scholar
  10. Blenke, H., Bohner, K., Hirner, W.: Druckverlust bei der Strömungsumlenkung um 180° im Schlaufenreaktor. Chem. Ing. Tech. 42(7), 479–480 (1970).  https://doi.org/10.1002/cite.330420712CrossRefGoogle Scholar
  11. Blenke, H., Bohner, K., Pfeiffer, W.: Hydrodynamische Berechnung von Schlaufenreaktoren für Einphasensysteme. Chem. Ing. Tech. 43(1–2), 10–17 (1971).  https://doi.org/10.1002/cite.330430103CrossRefGoogle Scholar
  12. Bloor, J.C., Anderson, G.K., Willey, A.R.: High rate aerobic treatment of brewery wastewater using the jet loop reactor. Water Res. 29(5), 1217–1223 (1995).  https://doi.org/10.1016/0043-1354(94)00310-4CrossRefGoogle Scholar
  13. Börner, A., Franke, R.: Hydroformylation: Fundamentals, Processes, and Applications in Organic Systhesis. Wiley-VCH, Weinheim (2016)CrossRefGoogle Scholar
  14. Bumrungthaichaichan, E.: A review on numerical consideration for computational fluid dynamics modeling of jet mixing tanks. Korean J. Chem. Eng. 33(11), 3050–3068 (2016).  https://doi.org/10.1007/s11814-016-0236-xCrossRefGoogle Scholar
  15. Cornils, B., Herrmann, W.A., Rasch, M.: Otto Roelen als Wegbereiter der industriellen homogenen Katalyse. Angew. Chem. 106(21), 2219–2238 (1994).  https://doi.org/10.1002/ange.19941062104CrossRefGoogle Scholar
  16. Cramers, P.H.M.R.: Hydrodynamics and mass transfer characteristics of liquid driven jet ejectors. Groningen (2003)Google Scholar
  17. Crozet, D., Urrutigoïty, M., Kalck, P.: Recent advances in amine synthesis by catalytic hydroaminomethylation of alkenes. ChemCatChem. 3(7), 1102–1118 (2011).  https://doi.org/10.1002/cctc.201000411CrossRefGoogle Scholar
  18. Eilbracht, P., Bärfacker, L., Buss, C., Hollmann, C., Kitsos-Rzychon, B.E., Kranemann, C.L., Rische, T., Roggenbuck, R., Schmidt, A.: Tandem reaction sequences under hydroformylation conditions: New synthetic applications of transition metal catalysis. Chem. Rev. 99(11), 3329–3366 (1999).  https://doi.org/10.1021/cr970413rCrossRefPubMedGoogle Scholar
  19. Engin, S.N., Yildiz, F., Ince, M., Engin, G.O., Keskinler, B.: Modeling and parameter identification of a jet-loop bioreactor. In: 2007 American Control Conference, pp. 6122–6127. American Control Conference, New York (2007). IEEE.  https://doi.org/10.1109/ACC.2007.4282956
  20. Eusébio, A., Petruccioli, M., Lageiro, M., Federici, F., Duarte, J.C.: Microbial characterisation of activated sludge in jet-loop bioreactors treating winery wastewaters. J. Ind. Microbiol. Biotechnol. 31(1), 29–34 (2004).  https://doi.org/10.1007/s10295-004-0111-3CrossRefPubMedGoogle Scholar
  21. Farizoglu, B., Keskinler, B.: Sludge characteristics and effect of crossflow membrane filtration on membrane fouling in a jet loop membrane bioreactor (JLMBR). J. Membr. Sci. 279(1–2), 578–587 (2006).  https://doi.org/10.1016/j.memsci.2005.12.050CrossRefGoogle Scholar
  22. Farizoglu, B., Keskinler, B., Yildiz, E., Nuhoglu, A.: Cheese whey treatment performance of an aerobic jet loop membrane bioreactor. Process Biochem. 39(12), 2283–2291 (2004).  https://doi.org/10.1016/j.procbio.2003.11.028CrossRefGoogle Scholar
  23. Fogg, D.E., dos Santos, E.N.: Tandem catalysis: a taxonomy and illustrative review. Coord. Chem. Rev. 248(21–24), 2365–2379 (2004).  https://doi.org/10.1016/j.ccr.2004.05.012CrossRefGoogle Scholar
  24. Franke, R., Selent, D., Börner, A.: Applied hydroformylation. Chem. Rev. 112(11), 5675–5732 (2012).  https://doi.org/10.1021/cr3001803CrossRefPubMedGoogle Scholar
  25. Galperin, B., Orszag, S.A. (Hrsg.): Large Eddy Simulation of Complex Engineering and Geophysical Flows. Cambridge University Press, Cambridge (2010)Google Scholar
  26. Güven, S., Hamers, B., Franke, R., Priske, M., Becker, M., Vogt, D.: Kinetics of cyclooctene hydroformylation for continuous homogeneous catalysis. Catal. Sci. Technol. 4(2), 524–530 (2014).  https://doi.org/10.1039/C3CY00676JCrossRefGoogle Scholar
  27. Hass, T., Gaube, J.: Selective hydrogenation: Kinetic investigation of 1, 3-cyclo-octadiene and cyclo-octene hydrogenation. Chem. Eng. Technol. 12(1), 45–53 (1989).  https://doi.org/10.1002/ceat.270120109CrossRefGoogle Scholar
  28. Jarboui, R., Sellami, F., Azri, C., Gharsallah, N., Ammar, E.: Olive mill wastewater evaporation management using PCA method case study of natural degradation in stabilization ponds (Sfax, Tunisia). J. Hazard. Mater. 176(1–3), 992–1005 (2010).  https://doi.org/10.1016/j.jhazmat.2009.11.140CrossRefPubMedGoogle Scholar
  29. Kavvadias, V., Doula, M.K., Komnitsas, K., Liakopoulou, N.: Disposal of olive oil mill wastes in evaporation ponds: Effects on soil properties. J. Hazard. Mater. 182(1–3), 144–155 (2010).  https://doi.org/10.1016/j.jhazmat.2010.06.007CrossRefPubMedGoogle Scholar
  30. Khan, Z., Joshi, J.B.: Comparison of k–ε, RSM and LES models for the prediction of flow pattern in jet loop reactor. Chem. Eng. Sci. 127, 323–333 (2015).  https://doi.org/10.1016/j.ces.2015.01.054CrossRefGoogle Scholar
  31. Khoufi, S., Aloui, F., Sayadi, S.: Treatment of olive oil mill wastewater by combined process electro-Fenton reaction and anaerobic digestion. Water Res. 40(10), 2007–2016 (2006).  https://doi.org/10.1016/j.watres.2006.03.023CrossRefPubMedGoogle Scholar
  32. Khoufi, S., Louhichi, A., Sayadi, S.: Optimization of anaerobic co-digestion of olive mill wastewater and liquid poultry manure in batch condition and semi-continuous jet-loop reactor. Bioresour. Technol. 182, 67–74 (2015).  https://doi.org/10.1016/j.biortech.2015.01.092CrossRefPubMedGoogle Scholar
  33. Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3(2), 269–289 (1974).  https://doi.org/10.1016/0045-7825(74)90029-2CrossRefGoogle Scholar
  34. Lier, S., Grünewald, M.: Net present value analysis of modular chemical production plants. Chem. Eng. Technol. 34(5), 809–816 (2011).  https://doi.org/10.1002/ceat.201000380CrossRefGoogle Scholar
  35. Mathpati, C.S., Deshpande, S.S., Joshi, J.B.: Computational and experimental fluid dynamics of jet loop reactor. AIChE J. 55(10), 2526–2544 (2009).  https://doi.org/10.1002/aic.11853CrossRefGoogle Scholar
  36. Möller, K.P., Böhringer, W., Schnitzler, A.E., van Steen, E., O’Connor, C.T.: The use of a jet loop reactor to study the effect of crystal size and the co-feeding of olefins and water on the conversion of methanol over HZSM-5. Microporous Mesoporous Mater. 29(1–2), 127–144 (1999).  https://doi.org/10.1016/S1387-1811(98)00326-6CrossRefGoogle Scholar
  37. Nagel, O., Kürten, H.: Untersuchungen zum Dispergieren im turbulenten Scherfeld. Chem. Ing. Tech. 48(6), 513–519 (1976).  https://doi.org/10.1002/cite.330480604CrossRefGoogle Scholar
  38. Nagel, O., Kürten, H., Sinn, R.: Strahldüsenreaktoren, Teil I: Die Anwendung des Ejektorprinzips zur Verbesserung der Gasabsorption in Blasensäulen. Chem. Ing. Tech. 42(7), 474–479 (1970).  https://doi.org/10.1002/cite.330420711CrossRefGoogle Scholar
  39. Nagel, O., Hegner, B., Kürten, H.: Kriterien für die Auswahl und die Auslegung von Gas/Flüssigkeits-Reaktoren. Chem. Ing. Tech. 50(12), 934–944 (1978).  https://doi.org/10.1002/cite.330501208CrossRefGoogle Scholar
  40. Park, J.-S., Lee, C.-H.: Removal of soluble COD by a biofilm formed on a membrane in a jet loop type membrane bioreactor. Water Res. 39(19), 4609–4622 (2005).  https://doi.org/10.1016/j.watres.2005.08.028CrossRefPubMedGoogle Scholar
  41. Petruccioli, M., Cardoso Duarte, J., Eusebio, A., Federici, F.: Aerobic treatment of winery wastewater using a jet-loop activated sludge reactor. Process Biochem. 37(8), 821–829 (2002).  https://doi.org/10.1016/S0032-9592(01)00280-1CrossRefGoogle Scholar
  42. Prinz, D., Riekert, L.: Formation of ethene and propene from methanol on zeolite ZSM-5. Appl. Catal. 37, 139–154 (1988).  https://doi.org/10.1016/S0166-9834(00)80757-5CrossRefGoogle Scholar
  43. Räbiger, N.: Hydrodynamik und Stoffaustausch in strahlangetriebenen Schlaufenreaktoren. Habil.-Schr. Techn. Univ. Clausthal. Praxiswissen Verfahrenstechnik Thermische Verfahrenstechnik. Verl. TÜV Rheinland, Köln (1988)Google Scholar
  44. Räbiger, N., Vogelpohl, A.: Der Kompaktreaktor, ein neuentwickelter Schlaufenreaktor mit hoher Stoffaustauschleistung. Chem. Ing. Tech. 55(6), 486–487 (1983).  https://doi.org/10.1002/cite.330550616CrossRefGoogle Scholar
  45. Revill, B.K.: Chapter 9 – Jet mixing. In: Harnby, N., Edwards, M.F., Nienow, A.W. (Hrsg.) Mixing in the Process Industries, 2. Aufl., S. 159–183. Butterworth-Heinemann, Oxford (1992)CrossRefGoogle Scholar
  46. Reynolds, W.C.: Fundamentals of Turbulence for Turbulence Modeling and Simulation. Defense Technical Information Center, Fort Belvoir (1987)Google Scholar
  47. Rippin, D.W.T.: Recycle reactor as a model of incomplete mixing. Ind. Eng. Chem. Fundam. 6(4), 488–492 (1967).  https://doi.org/10.1021/i160024a002CrossRefGoogle Scholar
  48. Salehi, Z., Sohrabi, M., Kaghazchi, T., Bonakdarpour, B.: Application of down flow jet loop bioreactors in implementation and kinetic determination of solid-liquid enzyme reactions. Process Biochem. 40(7), 2455–2460 (2005).  https://doi.org/10.1016/j.procbio.2004.09.027CrossRefGoogle Scholar
  49. Schermuly, O., Luft, G.: Untersuchung der Niederdruck-Methanolsynthese im Treibstrahlreaktor. Chem. Ing. Tech. 49(11), 907 (1977).  https://doi.org/10.1002/cite.330491111CrossRefGoogle Scholar
  50. Seifert, T., Fakner, P., Sievers, S., Stenger, F., Hamers, B., Priske, M., Becker, M., Franke, R., Schembecker, G., Bramsiepe, C.: Intensified hydroformylation as an example for flexible intermediates production. Chem. Eng. Process. Process Intensif. 85, 1–9 (2014).  https://doi.org/10.1016/j.cep.2014.07.003CrossRefGoogle Scholar
  51. Szafran, R.G., Kmiec, A.: Application of CFD modelling technique in engineering calculations of three-phase flow hydrodynamics in a jet-loop reactor. Int. J. Chem. React. Eng. 2(1) (2004).  https://doi.org/10.2202/1542-6580.1179
  52. Tabak, S.A., Yurchak, S.: Conversion of methanol over ZSM-5 to fuels and chemicals. Catal. Today. 6(3), 307–327 (1990).  https://doi.org/10.1016/0920-5861(90)85007-BCrossRefGoogle Scholar
  53. Tebel, K.H., Zehner, P.: Fluid dynamic description of jet-loop reactors in multiphase operation. Chem. Eng. Technol. 12(1), 274–280 (1989).  https://doi.org/10.1002/ceat.270120138CrossRefGoogle Scholar
  54. Vogelpohl, A.: Wastewater treatment by the HCR-process. Acta Biotechnol. 20(2), 119–128 (2000).  https://doi.org/10.1002/abio.370200206CrossRefGoogle Scholar
  55. Warmeling, H., Behr, A., Vorholt, A.J.: Jet loop reactors as a versatile reactor set up – intensifying catalytic reactions: A review. Chem. Eng. Sci. 149, 229–248 (2016).  https://doi.org/10.1016/j.ces.2016.04.032CrossRefGoogle Scholar
  56. Warmeling, H., Janz, D., Peters, M., Vorholt, A.J.: Acceleration of lean aqueous hydroformylation in an innovative jet loop reactor concept. Chem. Eng. J. 330, 585–595 (2017a).  https://doi.org/10.1016/j.cej.2017.07.152CrossRefGoogle Scholar
  57. Warmeling, H., Hafki, D., von Söhnen, T., Vorholt, A.J.: Kinetic investigation of lean aqueous hydroformylation – an engineer’s view on homogeneous catalysis. Chem. Eng. J. 326, 298–307 (2017b).  https://doi.org/10.1016/j.cej.2017.05.062CrossRefGoogle Scholar
  58. Warmeling, H., Schneider, A.-C., Vorholt, A.J.: Considerations on film reactivity in the aqueous biphasic hydroformylation. AIChE J. 64(1), 161–171 (2018).  https://doi.org/10.1002/aic.15884CrossRefGoogle Scholar
  59. Warnecke, H.-J.: Macromixing characteristics of gas-liquid jet loop reactors. Acta Biotechnol. 9(2), 111–121 (1989).  https://doi.org/10.1002/abio.370090204CrossRefGoogle Scholar
  60. Warnecke, H.-J., Geisendörfer, M., Hempel, D.C.: Mass transfer behaviour of gas-liquid jet loop reactors. Chem. Eng. Technol. 11(1), 306–311 (1988).  https://doi.org/10.1002/ceat.270110140CrossRefGoogle Scholar
  61. Wiedemann, M., John, S., Schlüter, M., Kutschera, D., Riener, F.-X., Döring, W., Neumann, S., Eisenlauer, J.: Einsatz des Strahlzonen-Schlaufenreaktors bei stofftransportlimitierten, mehrphasigen chemischen Reaktionen. Chem. Ing. Tech. 82(3), 243–250 (2010).  https://doi.org/10.1002/cite.200900164CrossRefGoogle Scholar
  62. Woods, D.R.: Rules of Thumb in Engineering Practice. Wiley-VCH, Weinheim (2007)CrossRefGoogle Scholar
  63. Yenkie, M.K.N., Geissen, S.U., Vogelpohl, A.: Biokineties of wastewater treatment in the high performance compact reactor (HCR). Chem. Eng. J. 49(1), B1–B12 (1992).  https://doi.org/10.1016/0300-9467(92)85027-7CrossRefGoogle Scholar
  64. Zehner, P.: Stoffaustauschfläche und Gasverdichtung in einer neu entwickelten Ejektorstrahldüse. Chem. Ing. Tech. 47(5), 209 (1975).  https://doi.org/10.1002/cite.330470512CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Fakultät Bio- und ChemieingenieurwesenTechnische Universität DortmundDortmundDeutschland
  2. 2.Abteilung für Molekulare KatalyseMax-Planck-Institut für chemische EnergiekonversionMülheimDeutschland

Personalised recommendations