Advertisement

Radioaktive Elemente: Actinoide

  • Hermann SiciusEmail author
Living reference work entry
  • 19 Downloads

Zusammenfassung

In diesem Kapitel werden ausführlich die Actinoiden mit ihren wichtigsten Verbindungen beschrieben. Diese insgesamt vierzehn Elemente sind alle radioaktiv, und nur einige von ihnen wie Thorium oder Uran kommen in der Natur vor. Die meisten Actinoide sind nur auf künstlichem Weg darstellbar. Es werden ihre chemischen und physikalischen Eigenschaften, ihr Vorkommen, bedeutsame Herstellverfahren, Anwendungen und Patente aufgeführt.

Literatur

  1. Acton QA (2013) Oxides – advances in research and application, 2013 edition. Scholarly Editions, Atlanta. ISBN 978-1-481-67865-0Google Scholar
  2. Adachi J et al (2005) A molecular dynamics study of thorium nitride. J Alloys Compd 394(1–2):312–316.  https://doi.org/10.1016/j.jallcom.2004.11.005 CrossRefGoogle Scholar
  3. Ahrland S et al (1973) The chemistry of the actinides, pergamon texts in inorganic chemistry, Bd 10, 1. Aufl. Pergamon Press, Oxford, S 398. ISBN 008-018794-3Google Scholar
  4. Aldred AT et al (1974) Magnetic properties of the neptunium monopnictides. Phys Rev B 9(9):3766–3778.  https://doi.org/10.1103/PhysRevB.9.3766 CrossRefGoogle Scholar
  5. Aldred AT et al (1980) Critical exponents of uranium telluride. J Magnet Magn Mat 20(3):236–242CrossRefGoogle Scholar
  6. Allisy A (1996) Henri Becquerel: the discovery of radioactivity. Rad Protect Dosim 68(1–2):3–10CrossRefGoogle Scholar
  7. Arnold PL et al (2009) Pentavalent uranyl complexes. Coord Chem Rev 253(15–16):1973–1978CrossRefGoogle Scholar
  8. ARQ Contributors (2008) Plutonium processing at Los Alamos, actinide research quarterly (3rd quarter, 2008). United States Department of Energy, Washington, DCGoogle Scholar
  9. Asprey LB (1954) New compounds of quadrivalent americium, AmF4, KAmF5. J Am Chem Soc 76(7):2019–2020.  https://doi.org/10.1021/ja01636a094 CrossRefGoogle Scholar
  10. Asprey LB, Haire RG (1973) On the actinide tetrafluoride lattice parameters. Inorg Nucl Chem Lett 9(11):1121–1128.  https://doi.org/10.1016/0020-1650(73)80017-0 CrossRefGoogle Scholar
  11. Asprey LB, Keenan TK (1968) The preparation of berkelium tetrafluoride and its lattice parameters. Inorg Nucl Chem Lett 4(9):537–541.  https://doi.org/10.1016/0020-1650(68)80028-5 CrossRefGoogle Scholar
  12. Asprey LB, Penneman RA (1961) First observation of aqueous tetravalent americium. J Am Chem Soc 83(9):2200.  https://doi.org/10.1021/ja01470a040 CrossRefGoogle Scholar
  13. Asprey LB, Penneman RA (1962) Preparation and properties of aqueous tetravalent americium. Inorg Chem 1(1):134–136.  https://doi.org/10.1021/ic50001a025 CrossRefGoogle Scholar
  14. Asprey LB et al (1950) A new valence state of americium, Am(VI). J Am Chem Soc 72(3):1425–1426CrossRefGoogle Scholar
  15. Asprey LB et al (1951) Hexavalent americium. J Am Chem Soc 73(12):5715–5717CrossRefGoogle Scholar
  16. Asprey LB et al (1955) Evidence for quadrivalent curium: X-ray data on curium oxides. J Am Chem Soc 77(6):1707–1708.  https://doi.org/10.1021/ja01611a108 CrossRefGoogle Scholar
  17. Asprey LB et al (1986) Formation of actinide hexafluorides at ambient temperatures with krypton difluoride. Inorg Chem 25(5):670–672.  https://doi.org/10.1021/ic00225a016 CrossRefGoogle Scholar
  18. Atterling H et al (1954) Element 100 produced by means of cyclotron-accelerated oxygen ions. Phys Rev 95(2):585–586.  https://doi.org/10.1103/PhysRev.95.585.2 CrossRefGoogle Scholar
  19. Atterling H et al (1957) Production of the new element 102. Phys Rev 107(5):1460–1462.  https://doi.org/10.1103/PhysRev.107.1460 CrossRefGoogle Scholar
  20. Audi G et al (2003) The NUBASE evaluation of nuclear and decay properties. Nucl Phys A 729:3–128.  https://doi.org/10.1016/j.nuclphysa.2003.11.001 CrossRefGoogle Scholar
  21. Auskern AB, Aronson S (1967) Electrical properties of thorium nitrides. J Phys Chem Solid 28(6):1069–1071.  https://doi.org/10.1016/0022-3697(67)90224-7 CrossRefGoogle Scholar
  22. Awasthi SK et al (1971) Preparation and characterisation of some Np(VII) compounds. Inorg Nucl Chem Lett 7:145–151.  https://doi.org/10.1016/0020-1650(71)80143-5 CrossRefGoogle Scholar
  23. Balasubramanian K (2001) Potential energy surfaces of lawrencium and nobelium dihydrides (LrH2 and NoH2). J Chem Phys 116(9):3568–3575.  https://doi.org/10.1063/1.1446029 CrossRefGoogle Scholar
  24. Barber RC et al (1993) Discovery of the transfermium elements. Part II: introduction to discovery profiles. Part III: discovery profiles of the transfermium elements. Pure Appl Chem 65(8):1757.  https://doi.org/10.1351/pac199365081757 CrossRefGoogle Scholar
  25. Baybarz RD (1968) The Berkelium oxide system. J Inorg Nucl Chem 30(7):1769–1773.  https://doi.org/10.1016/0022-1902(68)80352-5 CrossRefGoogle Scholar
  26. Baybarz RD et al (1972) On the californium oxide system. J Inorg Nucl Chem 34(2):557–565.  https://doi.org/10.1016/0022-1902(72)80435-4 CrossRefGoogle Scholar
  27. Bayerisches Staatsministerium für Umwelt (2006) Gesundheit und Verbraucherschutz. In: Radioaktivität und Strahlungsmessung, 8. Aufl., S 187Google Scholar
  28. Becquerel AH (1896a) Sur les radiations invisibles émises par les sels d’uranium. Comptes Rendus 122:689–694Google Scholar
  29. Becquerel AH (1896b) Émission de radiation nouvelles par l’uranium métallique. Comptes Rendus 122:1086–1088Google Scholar
  30. Becquerel AH (1896c) Sur diverses propriétés des rayons uraniques. Comptes Rendus 123:1086–1088Google Scholar
  31. Becquerel AH (1897) Recherches sur les rayons uraniques. Comptes Rendus 124:438–444Google Scholar
  32. Becquerel AH (1900) Sur le rayonnement de l’uranium et sur diverses proprietes physiques du rayonnement des corps radio-actifs. In: Rapports présentés au Congrès international de physique réuni à Paris en 1900 sous les auspices de la Société française de physique, Bd 3. Gauthier-Villars-Verlag, Paris, S 47–78Google Scholar
  33. Beitz JV, Williams CW (1990) Photochemical removal of NpF6 and PuF6 from UF6 gas streams. In: International symposium to commemorate the 50th anniversary of discovery of transuranium elements, Washington, DCGoogle Scholar
  34. Beitz JV et al (1983a). ISBN 0-8412-0772-0) Plutonium hexafluoride gas photophysics and photochemistry. Plutonium Chemistry, ACS Symposium Series 216(11):155–172.  https://doi.org/10.1021/bk-1983-0216.ch011 CrossRefGoogle Scholar
  35. Beitz J et al (1983b) 5f state interaction with inner coordination sphere ligands: Es3+ ion fluorescence in aqueous and organic phases. J Less Comm Met 93(2):331–338.  https://doi.org/10.1016/0022-5088(83)90178-9 CrossRefGoogle Scholar
  36. Benedict U et al (1986) Neptunium compounds under high pressure. J Less Comm Met 121:461–468.  https://doi.org/10.1016/0022-5088(86)90563-1 CrossRefGoogle Scholar
  37. Benefiel GT et al (1994) The plutonium story. The journals of professor Glenn T. Seaborg 1939–1946. Batelle Press, Columbus. ISBN 0-935470-75-1Google Scholar
  38. Benz R (1969) Thorium-Thorium dioxide phase equlibria. J Nucl Mater 29:43–49CrossRefGoogle Scholar
  39. Bernard H (1989) Advanced fuel fabrication. J Nucl Mat 166(1–2):105–111CrossRefGoogle Scholar
  40. Berninger EH (1974) Otto Hahn in Selbstzeugnissen und Bilddokumenten. Rowohlt-Verlag, ReinbekGoogle Scholar
  41. Bernstein ER, Meredith GR (1977) Vibrational spectra of transition metal Hexafluoride Crystals: III. Exciton band structures of MoF6, WF6 and UF6. Chem Phys 24(3):311–325.  https://doi.org/10.1016/0301-0104(77)85091-X CrossRefGoogle Scholar
  42. Berzelius JJ (1829) Untersuchung eines neuen Minerals und einer darin enthaltenen zuvor unbekannten Erde. Ann Phys Chem 92:385–415.  https://doi.org/10.1002/andp.18290920702 CrossRefGoogle Scholar
  43. Bibler NE (1979) α and β radiolysis of plutonium hexafluoride vapor. J Phys Chem 83(17):2179–2186.  https://doi.org/10.1021/j100480a001 CrossRefGoogle Scholar
  44. Binder HH (1999) Lexikon der chemischen Elemente. S. Hirzel Verlag, Stuttgart, S 18–23/174–178/469–476. ISBN 3-7776-0736–3Google Scholar
  45. Blaise A et al (1981) Electrical resistivity of neptunium mono and diarsenide. Solid State Commun 37(8):659–662.  https://doi.org/10.1016/0038-1098(81)90543-3 CrossRefGoogle Scholar
  46. Boggs JE, El-Chehabi M (1957) The thermal decomposition of uranium peroxide, UO4·2H2O. J Am Chem Soc 79(16):4258–4260.  https://doi.org/10.1021/ja01573a003 CrossRefGoogle Scholar
  47. Booth HS et al (1946) Uranium tetrafluoride. J Am Chem Soc 68(10):1969–1970.  https://doi.org/10.1021/ja01214a028 CrossRefGoogle Scholar
  48. Boulogne AR, Faraci JP (1971) A method of preparing a californium-252 neutron source (US 3627691, French Atomic Energy Commission, veröffentlicht 14. Dezember 1971)Google Scholar
  49. Brauer G (1975) Handbuch der Präparativen Anorganischen Chemie, Bd I, 3. Aufl. Enke-Verlag, Stuttgart, S 1135–1148/1170–1182, 1208/1225–1232/1241–1245. ISBN 3-432-02328-6Google Scholar
  50. Brauer G (1978) Handbuch der Präparativen Anorganischen Chemie, Bd II, 3. Aufl. Enke-Verlag, Stuttgart, S 1083/1158/1203–1207/1210–1218/1241–1245/1268–1272/1293/1299–1305. ISBN 3-432-87813-3Google Scholar
  51. BREDL (Blue Ridge Environmental Defense League). Southern anti-plutonium campaign, Glendale SpringsGoogle Scholar
  52. Brenna JG et al (1986) Chemistry of trivalent uranium metallocenes: electron-transfer reactions with carbon disulfide. Formation of [(RC5H4)3U]2[μ-η1,η2-CS2]. Inorg Chem 25(11):1756–1760.  https://doi.org/10.1021/ic00231a007 CrossRefGoogle Scholar
  53. Brewer L et al (1945) Reports CN-3300 und CN-3378. University of California Radiation Laboratory, BerkeleyGoogle Scholar
  54. Brewer L et al (1950) The higher fluorides of plutonium, Report UCRL-633. University of California Radiation Laboratory, BerkeleyGoogle Scholar
  55. Brown D (1979) The polymorphism of protactinium pentabromide. Inorg Nucl Chem Lett 15:219–223.  https://doi.org/10.1016/0020-1650(79)80132-4 CrossRefGoogle Scholar
  56. Brown HS et al (1942a) Metallurgical laboratory report CN-343. University of Chicago, ChicagoGoogle Scholar
  57. Brown HS et al (1942b) Metallurgical laboratory report CN-363. University of Chicago, ChicagoGoogle Scholar
  58. Brown D et al (1969) The crystal structure of β-protactinium pentabromide. Acta Cryst Sect B, Struct Crystall Cryst Chem 25:178–182.  https://doi.org/10.1107/S0567740869007357 CrossRefGoogle Scholar
  59. Bryhni I (2009) Jens Esmark. In: Store norske lexikon. MyhrensVerksted, TorshovGoogle Scholar
  60. Burlet P et al (1992) Neutron diffraction study of the magnetic ordering in NpBi. Physica B 180:131–132CrossRefGoogle Scholar
  61. Burnett JL (1966) Melting points of CmF3 and AmF3. J Inorg Nucl Chem 28(10):2454–2456.  https://doi.org/10.1016/0022-1902(66)80158-6 CrossRefGoogle Scholar
  62. Burney GA, Tober FW (1965) Precipitation of plutonium trifluoride. Ind Eng Chem Process Des Dev 4(1):28–32.  https://doi.org/10.1021/i260013a009 CrossRefGoogle Scholar
  63. Burns PC, Hughes K-A (2003) Studtite, [(UO2)(O2)(H2O)2](H2O)2: the first structure of a peroxide mineral. Am Mineral 88:1165–1168CrossRefGoogle Scholar
  64. Burns JH, Peterson JR (1971) The crystal structures of americium trichloride hexahydrate and berkelium trichloride hexahydrate. Inorg Chem 10(1):147–151.  https://doi.org/10.1021/ic50095a029 CrossRefGoogle Scholar
  65. Burns JH et al (1973) Hexagonal and orthorhombic crystal structures of californium trichloride. J Inorg Nucl Chem 35(4):1171–1177.  https://doi.org/10.1016/0022-1902(73)80189-7 CrossRefGoogle Scholar
  66. Burns JH et al (1975) Crystallographic studies of some transuranic trihalides: 239PuCl3, 244CmBr3, 249BkBr3 and 249CfBr3. J Inorg Nucl Chem 37(3):743–749.  https://doi.org/10.1016/0022-1902(75)80532-X CrossRefGoogle Scholar
  67. Burns RC et al (1981) Reactivity of transition metal fluorides – XII: plutonium hexafluoride. J Inorg Nucl Chem 43(6):1231–1238.  https://doi.org/10.1016/0022-1902(81)80023-1 CrossRefGoogle Scholar
  68. Burns JB et al (1998) Enthalpy of solution of californium oxychloride; calculation of the standard enthalpy of formation of CfOCl. J Alloys Compd 271-273:676–679.  https://doi.org/10.1016/S0925-8388(98)00185-6 CrossRefGoogle Scholar
  69. Carlisle R (2004) Scientific American inventions and discoveries. Wiley, Hoboken, S 256. ISBN 0-471-24410-4Google Scholar
  70. Carmack WJ (2004) Internal gelation as applied to the production of uranium nitride space nuclear fuel. AIP Conf Proc 699:420–425.  https://doi.org/10.1063/1.1649601 CrossRefGoogle Scholar
  71. Carnall WT et al (1965) Reactions in molten salt solutions. I. Uranate and neptunate formation in molten lithium nitrate-sodium nitrate. Inorg Chem 4(12):1808–1813.  https://doi.org/10.1021/ic50034a034 CrossRefGoogle Scholar
  72. Carniglia SC, Cunningham BB (1955) Vapor pressures of americium trifluoride and plutonium trifluoride, heats and free energies of sublimation. J Am Chem Soc 77(6):1451–1453.  https://doi.org/10.1021/ja01611a015 CrossRefGoogle Scholar
  73. Chang AHH, Pitzer RM (1989) Electronic structure and spectra of uranocene. J Am Chem Soc 111(7):2500–2507.  https://doi.org/10.1021/ja00189a022 CrossRefGoogle Scholar
  74. Chang C-TP et al (1990) Magnetic susceptibility of californium fluorides. Phys Rev B 14(13):9045–9048.  https://doi.org/10.1103/PhysRevB.41.9045 CrossRefGoogle Scholar
  75. Chetham-Strode A, Holm L (1956) New Isotope Einsteinium-248. Phys Rev 104(5):1314.  https://doi.org/10.1103/PhysRev.104.1314 CrossRefGoogle Scholar
  76. Chikalla TD, Eyring L (1968) Phase relationships in the Americium-Oxygen system. J Inorg Nucl Chem 30(1):133–145.  https://doi.org/10.1016/0022-1902(68)80072-7 CrossRefGoogle Scholar
  77. Choppin GR (2003) Mendelevium. Chem Eng News 81:36Google Scholar
  78. Choppin GR et al (1954) Nuclear properties of some isotopes of californium, elements 99 and 100. Phys Rev 94(4):1080–1081.  https://doi.org/10.1103/PhysRev.94.1080 CrossRefGoogle Scholar
  79. Choppin GR et al (1956) A new eluant for the separation of the actinide elements. J Inorg Nucl Chem 2(1):66–68.  https://doi.org/10.1016/0022-1902(56)80105-X CrossRefGoogle Scholar
  80. Claassen HH et al (1970) Raman Spectra of MoF6, TcF6, ReF6, UF6, SF6, SeF6, and TeF6 in the vapor state. J Chem Phys 53(1):341–348.  https://doi.org/10.1063/1.1673786 CrossRefGoogle Scholar
  81. Clark DL (2000) The chemical complexities of Plutonium. Los Alamos Science 26:373Google Scholar
  82. Clark JP, Green JC (1977) An investigation of the electronic structure of bis(eta-cyclo-octatetraene)-actinoids by helium-(I) and -(II) photoelectron spectroscopy. J Chem Soc Dalton Trans 5:505–508.  https://doi.org/10.1039/DT9770000505 CrossRefGoogle Scholar
  83. Clark DL et al (2006) Plutonium. In: Fuger J et al (Hrsg) The chemistry of the actinide and transactinide elements. Springer, Dordrecht, S 813–1264. ISBN 1-4020-3555-1.  https://doi.org/10.1007/1-4020-3598-5_7 CrossRefGoogle Scholar
  84. Clark DL et al (2013) Chemical speciation of neptunium(VI) under strongly alkaline conditions. Structure, composition, and oxo ligand exchange. Inorg Chem 52(7):3547–3555.  https://doi.org/10.1021/ic3020139 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Coenen F (1966) The preparation of α-UO3 by the high temperature hydrolysis of uranyl halides. J Inorg Nucl Chem 28:1733–1734.  https://doi.org/10.1016/0022-1902(66)80077-5 CrossRefGoogle Scholar
  86. Cohen D et al (1968) The preparation and crystal structure of some berkelium compounds. Inorg Nucl Chem Lett 4(5):257–260.  https://doi.org/10.1016/0020-1650(68)80125-4 CrossRefGoogle Scholar
  87. Coleman JS et al (1963) Preparation and properties of americium (VI) in aqueous carbonate solutions. Inorg Chem 2(1):58–61CrossRefGoogle Scholar
  88. Collin J et al (2000) Uranium iodides as catalysts for diels-al-der reactions. J Mol Catal A: Chemical 160(2):263–267.  https://doi.org/10.1016/S1381-1169(00)00257-0 CrossRefGoogle Scholar
  89. Copeland JC, Cunningham BB (1969) Crystallography of the compounds of californium. II. Crystal structure and lattice parameters of californium oxychloride and californium sesquioxide. J Inorg Nucl Chem 31(3):733–740.  https://doi.org/10.1016/0022-1902(69)80020-5 CrossRefGoogle Scholar
  90. Cordfunke EHP, Ouweltjes W (1981) Standard enthalpies of formation of uranium compounds VII. UF3 and UF4 (by solution calorimetry). J Chem Thermod 13(2):193–197.  https://doi.org/10.1016/S0021-9614(81)80025-0 CrossRefGoogle Scholar
  91. Costantini JM et al (1983) Crystal chemistry, magnetic, and electrical properties of the tetragonal plutonium oxide telluride Pu2O2Te. J Solid State Chem 47(2):210–224.  https://doi.org/10.1016/0022-4596(83)90010-5 CrossRefGoogle Scholar
  92. Cranston JA, Soddy F (1918) The parent of actinium. Nature 100:498–499CrossRefGoogle Scholar
  93. Crookes W (1899) Radio-activity of uranium. Proc Roy Soc Lond A 66:409–423.  https://doi.org/10.1098/rspl.1899.0120 CrossRefGoogle Scholar
  94. Cunningham BB (1966) Compounds of the actinides. In: Jolly WL (Hrsg) Preparative and inorganic reactions, Bd 3. Wiley, New York, S 79–121. ISBN 978-0470446966Google Scholar
  95. Cunningham B, Wallmann J (1960) Element 98 prepared. Sci News Lett 78:26CrossRefGoogle Scholar
  96. Cunningham BB, Wallmann JC (1964) Crystal structure and melting point of curium metal. J Inorg Nucl Chem 26(2):271–275CrossRefGoogle Scholar
  97. Cunningham BB, Werner LB (1949) The first isolation of Plutonium. J Am Chem Soc 71(5):1521–1528.  https://doi.org/10.1021/ja01173a001 CrossRefGoogle Scholar
  98. Curie M (1899) Effets chimiques produits par les rayons de Becquerel. Comptes Rendus 129:823–825Google Scholar
  99. Curie M (1900) Sur la charge électrique des rayons déviables du radium. Comptes Rendus 130:647–650Google Scholar
  100. Curie M (1906) Sur la diminution de la radioactivité du polonium avec le temps. Comptes Rendus 142:273–276Google Scholar
  101. Curie M, Curie P (1898) Sur une substance nouvelle radio-active, contenue dans la pechblende. Comptes Rendus 127:175–178Google Scholar
  102. Curie M, Mascart E (1902) Sur le poids atomique du radium. Comptes Rendus 135:161–163Google Scholar
  103. Curie M et al (1898) Sur une nouvelle substance fortement radio-active contenue dans la pechblende. Comptes Rendus 127:1215–1217Google Scholar
  104. Dabos S et al (1986) High-pressure X-ray diffraction on neptunium compounds: recent results for NpAs. Physica B 144:79–83.  https://doi.org/10.1016/0378-4363(86)90296-2 CrossRefGoogle Scholar
  105. Dallinger RF et al (1978) Resonance Raman spectroscopy of uranocene: observation of an anomalously polarized electronic band and assignment of energy levels. J Am Chem Soc 100(25):7865–7870.  https://doi.org/10.1021/ja00493a013 CrossRefGoogle Scholar
  106. Damien D, Wojakowski A (1975) Preparation et paramètres de maille des monoseleniures et monotellurures de neptunium et d'americium. Radiochem Radioanal Lett 23:145–154Google Scholar
  107. Damien D et al (1975) Preparation and lattice parameters of curium sulfides and selenides. Inorg Nucl Chem Lett 11(7–8):451–457CrossRefGoogle Scholar
  108. Damien D et al (1979) Curium-248 monopnictides and monochalcogenides. J Less Comm Met 68(2):159–165.  https://doi.org/10.1016/0022-5088(79)90052-3 CrossRefGoogle Scholar
  109. Damien D et al (1980a) Preparation and lattice parameters of 249Bk monopnictides. J Inorg Nucl Chem 42(7):995.  https://doi.org/10.1016/0022-1902(80)80390-3 CrossRefGoogle Scholar
  110. Damien D et al (1980b) Californium-249 monoarsenide and monoantimonide. Inorg Nucl Chem Lett 16(9–12):537–541.  https://doi.org/10.1016/0020-1650(80)80006-7 CrossRefGoogle Scholar
  111. Das HA et al (1971) Scandium in rocks, minerals and sediments and its relations to iron and aluminium. Contrib Mineral Petrol 32:231–244CrossRefGoogle Scholar
  112. De Witt R (1960) Uranium hexafluoride: a survey of the physico-chemical properties. Technical Report, GAT-280, Goodyear Atomic Corporation, Portsmouth.  https://doi.org/10.2172/4025868 CrossRefGoogle Scholar
  113. Debets PC (1966) The structure of β-UO3. Acta Crystallogr 21:589–593.  https://doi.org/10.1107/S0365110X66003505 CrossRefGoogle Scholar
  114. Debierne A-L (1899) Sur une nouvelle matière radio-active. Comptes Rendus 129:593–595Google Scholar
  115. Debierne A-L (1900) Sur un nouvel élément radio-actif: l’actinium. Comptes Rendus 130:906–908Google Scholar
  116. Delapalme A et al (1982) NpAs2: Magnetic form factor and tentative crystal field model. J Magnet Magn Mat 30(1):117–121CrossRefGoogle Scholar
  117. Diamond H et al (1954) Identification of californium isotopes 249, 250, 251, and 252 from pile-irradiated plutonium. Phys Rev 94(4):1083.  https://doi.org/10.1103/PhysRev.94.1083 CrossRefGoogle Scholar
  118. Dias H et al (2003) Critical mass calculations for 241Am, 242mAm and 243Am, Nippon Genshiryoku Kenkyujo JAERI Conference, S 618–623Google Scholar
  119. Ditte A (1880) Sur les composés fluorés de l'uranium. Comptes Rendus 91:115–118Google Scholar
  120. Ditte A (1884) Recherches sur l'uranium. Ann Chim Phys 6(1):338–358Google Scholar
  121. Dodge RP et al (1967) The crystal structure of protactinium pentachloride. Acta Crystallogr 22:85–89.  https://doi.org/10.1107/S0365110X67000155 CrossRefGoogle Scholar
  122. Donets ED et al (1965) Synthesis of the isotope of element 103 (lawrencium) with mass number 256. Sov Atom Energy 19(2):109.  https://doi.org/10.1007/BF01126414 CrossRefGoogle Scholar
  123. Douglass RM, Staritzky E (1957) Crystallographic Data. 153. Uranium Tetrabromide, UBr4. Anal Chem 29:459–459.  https://doi.org/10.1021/ac60123a607 CrossRefGoogle Scholar
  124. Drobyshevskii YV et al (1978) Synthesis and some properties of neptunium oxide tetrafluoride and neptunium pentafluoride. Radiokhim 20:238–243Google Scholar
  125. Drobyshevskii YV et al (2002) Application of physical methods for reducing plutonium hexafluoride. Atom Energy 93(1):578–588CrossRefGoogle Scholar
  126. Edelstein N et al (1970) Bis(cyclooctatetraenyl)neptunium(IV) and bis(cyclooctatetraenyl)plutonium(IV). J Chem Phys 92(16):4841–4845.  https://doi.org/10.1021/ja00719a014 CrossRefGoogle Scholar
  127. Eick HA (1965) Plutonium borides. Inorg Chem 4:1237–1239.  https://doi.org/10.1021/ic50030a037 CrossRefGoogle Scholar
  128. Eick HA, Mulford RNR (1969) Americium and neptunium borides. J Inorg Nucl Chem 31(2):371–375CrossRefGoogle Scholar
  129. Einstein A (1905a) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 322:549–560CrossRefGoogle Scholar
  130. Einstein A (1905b) Zur Elektrodynamik bewegter Körper. Ann Phys 322:891–921CrossRefGoogle Scholar
  131. Einstein A (1905c) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 323:639–641CrossRefGoogle Scholar
  132. Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen (Dissertation, Universität Zürich, 1905). Ann Phys 324:289–305CrossRefGoogle Scholar
  133. Eisenstein JC, Pryce MHL (1960) Theory of the magnetic and spectroscopic properties of neptunium hexafluoride. Proc Royal Soc Lond, Series A, Mathematical and Physical Sciences 255(1281):181–198.  https://doi.org/10.1098/rspa.1960.0061 CrossRefGoogle Scholar
  134. Eliav E et al (1995) Transition energies of ytterbium, lutetium, and lawrencium by the relativistic coupled-cluster method. Phys Rev A 52:291–296.  https://doi.org/10.1103/PhysRevA.52.291 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Eller PG et al (1998) Reactions of dioxygen difluoride with neptunium oxides and fluorides. J Alloys Compd 269(1–2):63–66.  https://doi.org/10.1016/S0925-8388(98)00005-X CrossRefGoogle Scholar
  136. Emeleus HJ, Sharpe AG (1970) Advances in inorganic chemistry and radiochemistry. Academic Press, Cambridge, MA, S 15/205–206. ISBN 978-0-08-057861-3Google Scholar
  137. Emsley J (2001) Nature’s building blocks: an A–Z guide to the elements. Oxford University Press, Oxford, S 347–349. ISBN 0-19-850340–7Google Scholar
  138. Engel M (1999) Noddack, Ida Eva. In: Neue Deutsche Biographie, Bd 19. Duncker & Humblot, Berlin, S 307. ISBN 3-428-00200-8Google Scholar
  139. Engelkemeir DW et al (1958) Neptunium isotopes: 234, 235, 236. Phys Rev 109(4):1263–1267.  https://doi.org/10.1103/PhysRev.109.1263 CrossRefGoogle Scholar
  140. Ensor DD et al (1981a) Absorption spectrophotometric study of berkelium (III) and (IV) fluorides in the solid state. J Inorg Nucl Chem 43(5):1001–1003.  https://doi.org/10.1016/0022-1902(81)80164-9 CrossRefGoogle Scholar
  141. Ensor DD et al (1981b) Absorption spectrophotometric study of 253EsF3 and its decay products in the bulk-phase solid state. J Inorg Nucl Chem 43(10):2425–2427.  https://doi.org/10.1016/0022-1902(81)80274-6 CrossRefGoogle Scholar
  142. Erdős P, Robinson JM (2012) The physics of actinide compounds, Nachdruck der 1. Auflage von 1983. Plenum Press, New York/London, S 38. ISBN-13: 978-1-4613-3583-2Google Scholar
  143. Eriksen TE et al (1993) Solubility of the redox-sensitive radionuclides 99Tc and 237Np under reducing conditions in neutral to alkaline solutions. SKB Technical Report 93-18, Stockholm, S 1–32Google Scholar
  144. Ermakov VA et al (1964) Synthesis of the element 102 of mass number 256. Atom Energy 16(3):233–245CrossRefGoogle Scholar
  145. Eskola K et al (1971) Studies of lawrencium isotopes with mass numbers 255 through 260. Phys Rev C 4(2):632–642.  https://doi.org/10.1103/PhysRevC.4.632 CrossRefGoogle Scholar
  146. Eubanks ID, Thompson MC (1969) Preparation of curium metal. Inorg Nucl Chem Lett 5(3):187–191CrossRefGoogle Scholar
  147. European Commission (2015) Joint Research Centre, Institute for Transuranium Elements. © European Atomic Energy Community, KarlsruheGoogle Scholar
  148. Fahey JA (1986) Neptunium. In: Morss et al (Hrsg) The chemistry of the actinide elements, 1. Aufl. Chapman & Hall, New York, S 456Google Scholar
  149. Fahey JA et al (1976) Decomposition, stoichiometry and structure of neptunium oxides. J Inorg Nucl Chem 38:495–500.  https://doi.org/10.1016/0022-1902(76)80291-6 CrossRefGoogle Scholar
  150. Fajans K (1913a) Die Stellung der Radioelemente im periodischen System. Phys Z 14(4):136–142Google Scholar
  151. Fajans K (1913b) Radioactive transformations and the periodic system of the elements. Ber Dt Chem Ges 46:422–439CrossRefGoogle Scholar
  152. Fajans K, Göhring O (1913a) Über die komplexe Natur des UrX2. Die Naturwiss 1(14):339.  https://doi.org/10.1007/BF01495360 CrossRefGoogle Scholar
  153. Fajans K, Göhring O (1913b) Über das Uran X2-das neue Element der Uranreihe. Phys Z 14:877–884Google Scholar
  154. Fant K (1991) Alfred nobel: a biography. Arcade Publishing, New York. ISBN 1-55970-328-8Google Scholar
  155. Federation of American Scientists. Uranium Production, Washington, DC 20036–4413Google Scholar
  156. Fellows R et al (1975) X-ray diffraction and spectroscopic studies of crystalline einsteinium(III) bromide, 253EsBr3. Inorg Nucl Chem Lett 11(11):737–742.  https://doi.org/10.1016/0020-1650(75)80090-0 CrossRefGoogle Scholar
  157. Fellows RL et al (1977a) Einsteinium. In: McCarthy GJ, Rhyne JJ (Hrsg) The rare earths in modern science and technology. Plenum Press, New York, S 493–499Google Scholar
  158. Fellows RL et al (1977b) Report ORO-4447-048. In: Peterson JR (Hrsg) Physical–chemical studies of transuranium elements. Progress Report April 1976–March 1977, U.S. Energy Research and Development Administration, University of Tennessee, KnoxvilleGoogle Scholar
  159. Fellows RL et al (1981) Chemical consequences of radioactive decay. 2. Spectrophotometric study of the ingrowth of berkelium-249 and californium-249 into halides of einsteinium-253. Inorg Chem 20(11):3979–3983CrossRefGoogle Scholar
  160. Fermi E (1934a) Radioactivity induced by neutron bombardment. Nature 133:757.  https://doi.org/10.1038/133757a0 CrossRefGoogle Scholar
  161. Fermi E (1934b) Element No. 93. Nature 133:863–864.  https://doi.org/10.1038/133863e0 CrossRefGoogle Scholar
  162. Fermi E (1934c) Possible production of elements of atomic number higher than 92. Nature 133:898–899.  https://doi.org/10.1038/133898a0 CrossRefGoogle Scholar
  163. Fermi E (1934d) Molecole e cristalli. N. Zanichelli, BolognaGoogle Scholar
  164. Fermi E (1938) Fisica per Istituti Tecnici. N. Zanichelli, BolognaGoogle Scholar
  165. Fernandez A et al (2004) Advanced Fuels for Transmutation, a new method for americium nitride fabrication. Atalante Symposium, NîmesGoogle Scholar
  166. Ferro R (1955) The crystal structures of thorium arsenides. Acta Crystallogr 8:360CrossRefGoogle Scholar
  167. Ferro R (1956) The crystal structures of thorium antimonides. Acta Crystallogr 9:817CrossRefGoogle Scholar
  168. Fields PR, Friedman AM (1957) (Argonne National Laboratory, Lemont, IL, USA); J. Milsted (Atomic Energy Research Establishment, Harwell, Vereinigtes Königreich); B. Åström et al. (Nobel Institute of Physics, Stockholm, Schweden), Production of the new element 102. Phys Rev 107(5):1460–1462CrossRefGoogle Scholar
  169. Fields PR et al (1954) Additional properties of isotopes of elements 99 and 100. Phys Rev 94(1):209–210.  https://doi.org/10.1103/PhysRev.94.209 CrossRefGoogle Scholar
  170. Fields PR et al (1956) Transplutonium elements in thermonuclear test debris. Phys Rev 102(1):180–182.  https://doi.org/10.1103/PhysRev.102.180 CrossRefGoogle Scholar
  171. Fischer RD (1977) NMR Spectroscopy of organometallic compounds of the f-elements: practical applications. In: Marks TJ, Fischer RD (Hrsg) Organometallics of the f-elements, NATO Advanced study Institutes series: series C – mathematical and physical sciences. D. Reidel Publishing Company, Dordrecht, S 337–377. ISBN 90-277-0990-4Google Scholar
  172. Fischer J et al (1961) The kinetics and mechanism of the thermal decomposition of plutonium hexafluoride. J Phys Chem 65(10):1843–1846.  https://doi.org/10.1021/j100827a036 CrossRefGoogle Scholar
  173. Fischer J et al (1962) Plutonium hexafluoride thermal decomposition rates. Ind Eng Chem Proc Des Dev 1(1):47–51.  https://doi.org/10.1021/i260001a010 CrossRefGoogle Scholar
  174. Fisher RW et al (1944) Report CN-1783. Iowa State College, Des MoinesGoogle Scholar
  175. Flerov GN (1967) On the nuclear properties of the isotopes 256103 and 257103. Nucl Phys A 106:476.  https://doi.org/10.1016/0375-9474(67)90892-5 CrossRefGoogle Scholar
  176. Flerov GN et al (1968) Synthesis and investigation of element 102, atom. Energy 24(1):3–15Google Scholar
  177. Florida Spectrum Environmental Services, Inc (2008) Spectrum element fact sheet: informationen zum element americium bei: http://www.speclab.com, Fort Lauderdale, letzter Zugegriffen am 08.10.2008
  178. Florin AE (1950a) Plutonium hexafluoride, plutonium (VI) oxyfluoride: preparation, identification, and some properties, report LAMS-1118. Los Alamos Scientific Laboratory, Los AlamosGoogle Scholar
  179. Florin AE (1950b) Plutonium hexafluoride: second report on the preparation and properties, report LA-1168. Los Alamos Scientific Laboratory, Los AlamosGoogle Scholar
  180. Florin AE (1953) Thermodynamic properties of plutonium hexafluoride: a preliminary report, report LAMS-1587. Los Alamos Scientific Laboratory, Los AlamosGoogle Scholar
  181. Florin AE et al (1956) Preparation and properties of plutonium hexafluoride and identification of plutonium(VI) oxyfluoride. J Inorg Nucl Chem 2(5–6):368–379.  https://doi.org/10.1016/0022-1902(56)80091-2 CrossRefGoogle Scholar
  182. Folcher GJ et al (1986) Hydroalumination of olefins by the LiAlH4/UCl4 system. Organomet Chem 309(1–2):C1–C3.  https://doi.org/10.1016/S0022-328X(00)99589-5 CrossRefGoogle Scholar
  183. Forbes TZ et al (2008) Metal-oxygen isopolyhedra assembled into fullerene topologies. Angew Chem Int Ed 47:2824–2827.  https://doi.org/10.1002/ange.200705563 CrossRefGoogle Scholar
  184. Fournier J-M (1976) Bonding and the electronic structure of the actinide metals. J Phys Chem Solid 37(2):235–244.  https://doi.org/10.1016/0022-3697(76)90167-0 CrossRefGoogle Scholar
  185. Fowler RD et al (1965) Superconductivity of protactinium. Phys Rev Lett 15(22):860–862CrossRefGoogle Scholar
  186. Fried S (1951) The preparation of anhydrous americium compounds. J Am Chem Soc 73(1):416–418.  https://doi.org/10.1021/ja01145a135 CrossRefGoogle Scholar
  187. Fried S (1954) Neptunium. In: Seaborg G, Katz JJ (Hrsg) The actinide elements. McGraw-Hill, New York, S 471Google Scholar
  188. Fried S, Davidson N (1948) The preparation of solid neptunium compounds. J Am Chem Soc 70(11):3539–3547.  https://doi.org/10.1021/ja01191a003 CrossRefPubMedPubMedCentralGoogle Scholar
  189. Fried S et al (1950) The preparation and identification of some pure actinium compounds. J Am Chem Soc 72:771–775CrossRefGoogle Scholar
  190. Frisch F (1977) Klipp und klar, 100 × Energie. Bibliographisches Institut AG, Mannheim, S 184. ISBN 3-411-01704–XGoogle Scholar
  191. Frlec B (1967) The density of liquid neptunium hexafluoride. J Inorg Nucl Chem 29(7):1804–1805.  https://doi.org/10.1016/0022-1902(67)80227-6 CrossRefGoogle Scholar
  192. Fuger J et al (1981) A new determination of the enthalpy of solution of berkelium metal and the standard enthalpy of formation of Bk3+ (aq). J Inorg Nucl Chem 43(12):3209–3212CrossRefGoogle Scholar
  193. Fuger J et al (1984) The enthalpy of solution of californium metal and the standard enthalpy of formation of Cf3+ (aq). J Less Comm Met 98(2):315–321CrossRefGoogle Scholar
  194. Fuger J et al (1990) Molar enthalpy of formation of californium tribromide. J Less Comm Met 158(11):99–104.  https://doi.org/10.1016/0022-5088(90)90435-M CrossRefGoogle Scholar
  195. Fuger J et al (2006) The chemistry of the actinide and transactinide elements. Springer, Dordrecht, S 699–812. ISBN 1-4020-3555-1.  https://doi.org/10.1007/1-4020-3598-5_6 CrossRefGoogle Scholar
  196. Fuger J et al (2010) The chemistry of the actinide and transactinide elements. Springer, Dordrecht, S 61/79/83/198/201/522/526/567/1002. ISBN 978-94-007-0211-0Google Scholar
  197. Fujita D et al (1969a) The solution absorption spectrum of Es3+. Inorg Nucl Chem Lett 5(4):245–250.  https://doi.org/10.1016/0020-1650(69)80192-3 CrossRefGoogle Scholar
  198. Fujita D et al (1969b) Crystal structures and lattice parameters of einsteinium trichloride and einsteinium oxychloride. Inorg Nucl Chem Lett 5(4):307–313.  https://doi.org/10.1016/0020-1650(69)80203-5 CrossRefGoogle Scholar
  199. Fulde P et al (1997) Low-lying electronic states of lanthanocenes and actinocenes M(C8H8)2 (M=Nd, Tb, Yb, U). J Chem Phys 107(9):3584–3591.  https://doi.org/10.1063/1.474698 CrossRefGoogle Scholar
  200. Ganesan S et al (1999) A re-calculation of criticality property of 231Pa using new nuclear data. Curr Sci 77(5):667–671Google Scholar
  201. Ganguly C (2014) Advanced methods for the fabrication of mixed uranium plutonium oxide, monocarbide and mononitride fuels for fast breeder reactors. Trans Ind Ceram Soc 47(6):161–171CrossRefGoogle Scholar
  202. Garrett AB (1947) The chemistry of elements 93, 94, 95 and 96 (neptunium, plutonium, americium and curium). Ohio J Sci XLVII(3):103–106Google Scholar
  203. Ghiorso A (2003a) Einsteinium and fermium. Chem Eng News 81(36):174.  https://doi.org/10.1021/cen-v081n036.p174 CrossRefGoogle Scholar
  204. Ghiorso A (2003b) Einsteinium and fermium (Lawrence Berkeley National Laboratory, Berkeley). In: Chemical & engineering news, Copyright © 2003 American Chemical Society. http://pubs.acs.org/cen/80th/einsteiniumfermium.html
  205. Ghiorso A et al (1954) Reactions of U238 with cyclotron-produced nitrogen ions. Phys Rev 93(1):257–257.  https://doi.org/10.1103/PhysRev.93.257 CrossRefGoogle Scholar
  206. Ghiorso A et al (1955a) New elements einsteinium and fermium, atomic numbers 99 and 100. Phys Rev 99(3):1048–1049.  https://doi.org/10.1103/PhysRev.99.1048 CrossRefGoogle Scholar
  207. Ghiorso A et al (1955b) New element mendelevium, atomic number 101. Phys Rev 98(5):1518–1519.  https://doi.org/10.1103/PhysRev.98.1518 CrossRefGoogle Scholar
  208. Ghiorso A et al (1961) New element lawrencium, atomic number 103. Phys Rev Lett 6(9):473–475CrossRefGoogle Scholar
  209. Ghiorso A et al (1968) Nobelium, tracer chemistry of the divalent and trivalent ions. Science 160(3832):1114–1115PubMedCrossRefPubMedCentralGoogle Scholar
  210. Ghiorso A et al (1993) Responses on ‚Discovery of the transfermium elements‘ by Lawrence Berkeley Laboratory, California; Joint Institute for Nuclear Research, Dubna; and Gesellschaft fur Schwerionenforschung, Darmstadt followed by reply to responses by the Transfermium Working Group. Pure Appl Chem 65(8):1815–1824.  https://doi.org/10.1351/pac199365081815 CrossRefGoogle Scholar
  211. Gingerich KA, Wilson DW (1965) Preparation and properties of thorium monophosphide, ThP1-x, and phase studies of the partial system Th-ThP. Inorg Chem 4(7):987–993CrossRefGoogle Scholar
  212. Golliher W, Harris R (1973) Removal of plutonium from plutonium hexafluoride-uranium hexafluoride mixtures. US 3708568, Atomic Energy Commission, Washington, DC, veröffentlicht 2. Januar 1973Google Scholar
  213. Goodman GL, Fred M (1959) Electronic structure of neptunium hexafluoride. J Chem Phys 30:849–850.  https://doi.org/10.1063/1.1730060 CrossRefGoogle Scholar
  214. Gorlé F et al (1974) Uranium carbide fuel technology. J Nucl Mat 51(3):343–353CrossRefGoogle Scholar
  215. Gradel G, Doerr W (2001) Method for manufacturing a nuclear fuel sintered body and nuclear fuel sintered body. DE10115015C1, Framatome ANP GmbH, veröffentlicht 27. März 2001Google Scholar
  216. Graetzer HD, Anderson DL (1971) The discovery of nuclear fission. Nostrand-Reinhold, New YorkGoogle Scholar
  217. Grebenkin KF et al (1997) Synthesis of plutonium trifluoride from weapons – plutonium as a potential fuel for power reactors. Atom Energy 83(2):614–621CrossRefGoogle Scholar
  218. Green B (1947) Mycosis fungoides – treated with thorium X. Proc of the Royal Soc Medic 40(9):503CrossRefGoogle Scholar
  219. Green JL, Cunningham BB (1967) Crystallography of the compounds of californium. I. Crystal structure and lattice parameters of californium sesquioxide and californium trichloride. Inorg Nucl Chem Lett 3(9):343–349.  https://doi.org/10.1016/0020-1650(67)80040-0 CrossRefGoogle Scholar
  220. Greenwood NN (1997) Recent developments concerning the discovery of elements 101–111. Pure Appl Chem 69(1):179–184.  https://doi.org/10.1351/pac199769010179 CrossRefGoogle Scholar
  221. Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2. Aufl. Butterworth-Heinemann/Elsevier, Oxford, S 1265. ISBN 0-08-037941-9Google Scholar
  222. Grosse A von (1934a) Element 91. Science 80(2084):512–516PubMedCrossRefPubMedCentralGoogle Scholar
  223. Grosse A von (1934b) Metallic element 91. J Am Chem Soc 56(10):2200–2201Google Scholar
  224. Grosse A von (1935) Zur Herstellung von Protactinium, Ber Dt Chem Ges 68(2):307–309Google Scholar
  225. Grosse A von (1941) Chemical properties of uranium hexafluoride, UF6; technical report, A-83. Columbia University, New York.  https://doi.org/10.2172/962915
  226. Gruen DM et al (1956) Magnetic susceptibility of plutonium hexafluoride. J Chem Phys 24(4):905–906.  https://doi.org/10.1063/1.1742635 CrossRefGoogle Scholar
  227. Gschneidner KA, Eyring LR (1995) Handbook of physics and chemistry of rare earths, Bd 21. Elsevier-Verlag, AmsterdamGoogle Scholar
  228. Gupta CK (1990) Hydrometallurgy in extraction processes. CRC Press, Boca Raton, S 206–208. ISBN 978-0-8493-6805-9Google Scholar
  229. Guseva L et al (1956) Experiments on the production of einsteinium and fermium with a cyclotron. J Nucl Energy 3(4):341–346.  https://doi.org/10.1016/0891-3919(56)90064-X CrossRefGoogle Scholar
  230. Hahn O (1921) Über eine neue radioaktive Substanz im Uran. Ber Dt Chem Ges 54(6):1131–1142.  https://doi.org/10.1002/cber.19210540602 CrossRefGoogle Scholar
  231. Hahn O (1926) Was lehrt uns die Radioaktivität über die Geschichte der Erde? Springer, BerlinCrossRefGoogle Scholar
  232. Hahn O (1936) Applied radiochemistry. Cornell University Press, IthacaGoogle Scholar
  233. Hahn O (1938) Die chemischen Elemente und natürlichen Atomarten. Springer, BerlinGoogle Scholar
  234. Hahn O (1941) Natürliche und künstliche Umwandlungen der Atomkerne. Verlag Schroll, WienGoogle Scholar
  235. Hahn D (1986) Otto Hahn – Mein Leben. Die Erinnerungen des großen Atomforschers und Humanisten, erw. Neuausgabe. Piper-Verlag, München. ISBN 3-492-00838-0Google Scholar
  236. Hahn O, Meitner L (1918) Die Muttersubstanz des Actiniums, ein neues radioaktives Element von langer Lebensdauer. Phys Z 19:208–218.  https://doi.org/10.1002/bbpc.19180241107 CrossRefGoogle Scholar
  237. Hainer RM (1950) Preparation of UF6. US 2535572, veröffentlicht 26. Dezember 1950Google Scholar
  238. Haire RG (1978) Report 5485. Oak Ridge National Laboratory (ORNL), Oak RidgeGoogle Scholar
  239. Haire RG (1986) Preparation, properties, and some recent studies of the actinide metals. J Less Comm Met 121:379–398.  https://doi.org/10.1016/0022-5088(86)90554-0 CrossRefGoogle Scholar
  240. Haire RG (1990) Properties of the transplutonium metals (Am-Fm), metals handbook, Bd 2, 10. Aufl. ASM International, Materials Park, S 1198–1201Google Scholar
  241. Haire RG (2006) Californium. In: Fuger J et al (Hrsg) The chemistry of the actinide and transactinide elements. Springer, Dordrecht, S 1499–1576. ISBN 1-4020-3555-1.  https://doi.org/10.1007/1-4020-3598-5_11 CrossRefGoogle Scholar
  242. Haire RG (2007) Insights into the bonding and electronic nature of heavy element materials. J Alloys Compd 444–445:63–71.  https://doi.org/10.1016/j.jallcom.2007.01.103 CrossRefGoogle Scholar
  243. Haire RG, Baybarz RD (1973) Identification and analysis of einsteinium sesquioxide by electron diffraction. J Inorg Nucl Chem 35(2):489–496.  https://doi.org/10.1016/0022-1902(73)80561-5 CrossRefGoogle Scholar
  244. Haire RG, Baybarz RD (1974) Crystal structure and melting point of californium metal. J Inorg Nucl Chem 36(6):1295.  https://doi.org/10.1016/0022-1902(74)80067-9 CrossRefGoogle Scholar
  245. Haire RG, Baybarz RD (1979) Studies of einsteinium metal. J Phys 40:C 4-101.  https://doi.org/10.1051/jphyscol:1979431 CrossRefGoogle Scholar
  246. Haire RG, Eyring L (1994) Lanthanides and actinides chemistry. In: Gschneidner KA Jr et al (Hrsg) Handbook on the physics and chemistry of rare earths. Elsevier-Verlag, New York, S 414–505. ISBN 0-444-81724-7Google Scholar
  247. Haire RG et al (1975) X-ray diffraction and spectroscopic studies of crystalline einsteinium-III-bromide, 253EsBr3. Inorg Nucl Chem Lett 11(11):737–742CrossRefGoogle Scholar
  248. Haire RG et al (1977) Stabilization of Californium(II) in the solid state: californium dichloride, 249CfCl2, radiochem. Radioanal Lett 31:277–282Google Scholar
  249. Haire RG et al (1984) Henry’s Law vaporization studies and thermodynamics of einsteinium-253 metal dissolved in ytterbium. J Chem Phys 81:473–477CrossRefGoogle Scholar
  250. Haire RG et al (1987) Studies of selected transuranium and lanthanide tri-iodides under pressure using absorption spectrophotometry. J Less Comm Met 133(1):167–175.  https://doi.org/10.1016/0022-5088(87)90470-X CrossRefGoogle Scholar
  251. Haire RG et al (2003) First observation of atomic levels for the element fermium (Z = 100). Phys Rev Lett 90(16):163002PubMedCrossRefPubMedCentralGoogle Scholar
  252. Hall N (2000) The new chemistry. Cambridge University Press, Cambridge, S 9–11. ISBN 0-521-45224-4Google Scholar
  253. Hammond CR (2000) The elements, handbook of chemistry and physics, 81. Aufl. CRC Press, Boca Raton. ISBN 0-8493-0481-4Google Scholar
  254. Harvey BG et al (1954) Further production of transcurium nuclides by neutron irradiation. Phys Rev 93(5):1129.  https://doi.org/10.1103/PhysRev.93.1129 CrossRefGoogle Scholar
  255. Harvey B et al (1956) New isotopes of einsteinium. Phys Rev 104(5):1315–1319.  https://doi.org/10.1103/PhysRev.104.1315 CrossRefGoogle Scholar
  256. Haschke JM, Allen TH (2001) Plutonium hydride, sesquioxide and monoxide monohydride: pyrophoricity and catalysis of plutonium corrosion. J Alloys Compd 320(1):58–71.  https://doi.org/10.1016/S0925-8388(01)00932-X CrossRefGoogle Scholar
  257. Haschke JM et al (2000) Surface and corrosion chemistry of plutonium. Los Alamos Science, Los Alamos, S 252Google Scholar
  258. Haug HO (1967) Curium Sesquioxide Cm2O3. J Inorg Nucl Chem 29(11):2753–2758.  https://doi.org/10.1016/0022-1902(67)80014-9 CrossRefGoogle Scholar
  259. Haug HO, Baybarz RD (1975) Lattice parameters of the actinide tetrafluorides UF4, BkF4, and CfF4. Inorg Nucl Chem Lett 11(12):847–855.  https://doi.org/10.1016/0020-1650(75)80112-7 CrossRefGoogle Scholar
  260. Hausen DM (1988) Characterizing and classifying uranium yellow cakes: a background. J Min 50(12):45–47.  https://doi.org/10.1007/s11837-998-0307-5 CrossRefGoogle Scholar
  261. Hawkins NJ et al (1955) Infrared spectrum of plutonium hexafluoride. J Chem Phys 23:2191–2192.  https://doi.org/10.1063/1.1740699 CrossRefGoogle Scholar
  262. Hayashi H (2013) Syntheses and thermal analyses of curium trichloride. J Radioanal Nucl Chem 297(1):139–144CrossRefGoogle Scholar
  263. Hayashi H et al (2008) Synthesis of americium trichloride by the reaction of americium nitride with cadmium chloride. J Alloys Compd 456:243–246CrossRefGoogle Scholar
  264. Hayashi H et al (2013) Separation and recovery of Cm from Cm–Pu mixed oxide samples containing Am impurity. J Radioanal Nucl Chem 296(3):1275–1286.  https://doi.org/10.1007/s10967-012-2304-y CrossRefGoogle Scholar
  265. Haynes WM (2011) CRC Handbook of chemistry and physics, 92. Aufl. CRC Press, Boca Raton, S 4.121–4.123. ISBN 1439855110Google Scholar
  266. Hecht F, Zacherl MK (1955) Handbuch der Mikrochemischen Methoden. Springer, Wien, ÖsterreichCrossRefGoogle Scholar
  267. Heinzelmann A (1911) Das Uranhexafluorid, ein Beitrag zur Kenntnis des sechswertigen Urans. Dissertation, Universität DanzigGoogle Scholar
  268. Hektoen L, Corper HJ (1920) The Influence of Thorium X on Antibody-Formation. J Infect Dis 26(4):331–335CrossRefGoogle Scholar
  269. Henkel P, Klemm W (1935) Magnetochemische Untersuchungen. XII. Das Magnetische Verhalten einiger flüchtiger Fluoride. Z Anorg Chem 222:70–72.  https://doi.org/10.1002/zaac.19352220110 CrossRefGoogle Scholar
  270. Henkie Z, Markowski PJ (1978) Preparation and semiconducting properties of Th3As4. J Phys Chem Solid 39(1):39–43CrossRefGoogle Scholar
  271. Hermens RA, Kendall JB (1993) Gewinnung von Uran aus Lösungen (DE 3587334T2, Siemens AG, veröffentlicht 28. Oktober 1993)Google Scholar
  272. Heyn B et al (1986) Anorganische Synthesechemie: Ein integriertes Praktikum. Springer, Berlin/Heidelberg, S 29. ISBN-13: 978-3-642-96955-3.  https://doi.org/10.1007/978-3-642-96954-6 CrossRefGoogle Scholar
  273. Hobart DE et al (1979) Electrochemical study of mendelevium in aqueous solution: no evidence for monovalent ions. J Inorg Nucl Chem 41(12):1749–1754.  https://doi.org/10.1016/0022-1902(79)80117-7 CrossRefGoogle Scholar
  274. Hoekstra HR, Gebert E (1977) Some ternary oxides of neptunium and plutonium with the alkali metals. J Inorg Nucl Chem 39:2219–2221.  https://doi.org/10.1016/0022-1902(77)80399-0 CrossRefGoogle Scholar
  275. Hoffman DC et al (1971) Detection of plutonium-244 in nature. Nature 234:132–134.  https://doi.org/10.1038/234132a0 CrossRefGoogle Scholar
  276. Hoffman DC, Ghiorso A, Seaborg † GT (2000) The transuranium people. The inside story. Imperial College Press, London. ISBN 1-86094-087-0CrossRefGoogle Scholar
  277. Hoffman DC et al (2006) Transactinides and the future elements. In: Fuger J et al (Hrsg) The chemistry of the actinide and transactinide elements, 3. Aufl. Springer, Dordrecht, S 1660/1686. ISBN 978-1-4020-3555-5Google Scholar
  278. Hoffmann K (1979) Kann man Gold machen? Gauner, Gaukler und Gelehrte. Aus der Geschichte der chemischen Elemente. Urania-Verlag, Leipzig, S 233Google Scholar
  279. Hofmann S (2002) On beyond uranium: journey to the end of the periodic table. CRC Press, Boca Raton, S 40–42. ISBN 0-415-28496-1CrossRefGoogle Scholar
  280. Holleman AF, Wiberg E, Wiberg N (2007) Lehrbuch der Anorganischen Chemie, 102. Aufl. De Gruyter-Verlag, Berlin, S 1948–1956. / 1969-1972 / 1980 / 2149. ISBN 978-3-11-017770-1CrossRefGoogle Scholar
  281. Holley CE Jr et al (1984) The chemical thermodynamics of actinide elements and compounds, teil 6: the actinide carbides. International Atomic Energy Agency, Wien, S 49–51Google Scholar
  282. Holmyard EJ (1929) Makers of chemistry. Clarendon Press, Oxford, S 267–273Google Scholar
  283. Horovitz CT (2012) Scandium: its occurrence, chemistry, physics, metallurgy, biology and technology. Elsevier-Verlag, Amsterdam, S 50. ISBN 032314451–9Google Scholar
  284. Housecroft CE, Sharpe AG (2005) Inorganic chemistry. Pearson Education, London, S 756Google Scholar
  285. Howard CJ et al (1982) Crystallographic parameters in α-UF5 and U2F9 by multiphase refinement of high-resolution neutron powder data. J Solid State Chem 45:396–398.  https://doi.org/10.1016/0022-4596(82)90185-2 CrossRefGoogle Scholar
  286. Huber EJ Jr, Holley CE Jr (1968) Enthalpy of formation of neptunium dioxide. J Chem Eng Data 13(4):545–546.  https://doi.org/10.1021/je60039a029 CrossRefGoogle Scholar
  287. Hulet EK (1979) Chapter 12. Chemistry of the heaviest actinides: fermium, mendelevium, nobelium, and lawrencium. In: Edelstein NM (Hrsg) Lanthanide and actinide chemistry and spectroscopy. ACS Symposium, Washington.  https://doi.org/10.1021/bk-1980-0131.ch012. ISBN 978-0-8412-0568-0CrossRefGoogle Scholar
  288. Hulet EK et al (1979) Non-observance of monovalent Md. J Inorg Nucl Chem 41(12):1743–1747.  https://doi.org/10.1016/0022-1902(79)80116-5 CrossRefGoogle Scholar
  289. Hulliger F (1966) Thorium monoarsenide. Nature 209:499–500CrossRefGoogle Scholar
  290. Hummel W et al (2002) Nagra/PSI, Chemical thermodynamic database 01/01. Universal Publishers, Parkland. ISBN 1-58112-620-4Google Scholar
  291. Huray PG et al (1983) Magnetism of the heavy 5f elements. J Less Comm Met 93(2):293–300.  https://doi.org/10.1016/0022-5088(83)90175-3 CrossRefGoogle Scholar
  292. Huray PG et al (1984) Magnetic properties of Es2O3 and EsF3. Inorg Chim Acta 94:120–122.  https://doi.org/10.1016/S0020-1693(00)94587-0 CrossRefGoogle Scholar
  293. Hurst R et al (1953) Plutonium hexafluoride, Part II, preparation and some physical properties, report A.E.R.E. C/R-1312. Atomic Energy Research Establishment, HarwellGoogle Scholar
  294. Hutchison CA, Weinstock B (1960) Paramagnetic resonance absorption in neptunium hexafluoride. J Chem Phys 32:56–61.  https://doi.org/10.1063/1.1700947 CrossRefGoogle Scholar
  295. Hutchison CA et al (1962) Magnetic susceptibility of neptunium hexafluoride in uranium hexafluoride. J Chem Phys 37:555–562.  https://doi.org/10.1063/1.1701373 CrossRefGoogle Scholar
  296. Ibers JA et al (2011) Syntheses, structures, and magnetic properties of Np3S5 and Np3Se5. Inorg Chem 50:1084–1088.  https://doi.org/10.1021/ic101915x CrossRefPubMedPubMedCentralGoogle Scholar
  297. Ibers JA et al (2013) Reinvestigation of Np2Se5: a clear divergence from Th2S5 and Th2Se5 in chalcogen – chalcogen and metal – chalcogen interactions. Inorg Chem 52:9111–9118.  https://doi.org/10.1021/ic401384t CrossRefPubMedPubMedCentralGoogle Scholar
  298. Ihde AJ (1964) The development of modern chemistry. Harper & Row, New York, S 243–256Google Scholar
  299. Institut de Radioprotection et de Sûreté Nucléaire. Evaluation of nuclear criticality safety data and limits for actinides in transport, www.irsn.fr, Fontenay-aux-Roses, S 16
  300. Jain A et al (2013) The materials project: a materials genome approach to accelerating materials innovation. Appl Mat 1:011002Google Scholar
  301. Jander W (1924) Über Darstellung von reinem Uran. Z Anorg Allg Chem 138(1):321–329CrossRefGoogle Scholar
  302. Jantsch G, Urbach W (1919) Über Verbindungen des Thoriums. I. Über Additions- und Substitutionsverbindungen des Thoriumchlorids. Helv Chim Acta 2:490–500.  https://doi.org/10.1002/hlca.19190020152 CrossRefGoogle Scholar
  303. Javorsky CA, Benz R (1967) Phase Equilibria in the Thorium – Thorium monophosphide system. J Nucl Mater 23:192–198CrossRefGoogle Scholar
  304. Jeapes AP, Fields M (1998) Uranium Hexafluoride Purification. US-Patent 5723837, veröffentlicht am 3. März 1998Google Scholar
  305. Jha PK, Sangal SP (1997) Structural phase transition in uranium arsenide and telluride. Phys Stat Sol 200(1):13–18.  https://doi.org/10.1002/1521-3951(199703)200:1 CrossRefGoogle Scholar
  306. Johansson S (1954) Decay of UX1, UX2, and UZ. Phys Rev 96(4):1075.  https://doi.org/10.1103/PhysRev.96.1075 CrossRefGoogle Scholar
  307. Johansson B, Rosengren A (1975) Generalized phase diagram for the rare-earth elements: calculations and correlations of bulk properties. Phys Rev B 11(8):2836–2857.  https://doi.org/10.1103/PhysRevB.11.2836 CrossRefGoogle Scholar
  308. Johnson GK (1979) The enthalpy of formation of uranium hexafluoride. J Chem Thermod 11(5):483–490.  https://doi.org/10.1016/0021-9614(79)90126-5 CrossRefGoogle Scholar
  309. Kaji M (2003) Mendeleevs discovery of the periodic law: the origin and the reception. Found Chem 5:189–214CrossRefGoogle Scholar
  310. Kaldor U, Wilson S (2005) Theoretical chemistry and physics of heavy and superheavy elements. Springer, Dordrecht, S 57. ISBN 1-4020-1371-XGoogle Scholar
  311. Kato Y et al (1996) Solid-liquid phase-equilibria Of Np(VI) and Of U(VI) under controlled CO2 partial pressures. Radiochim Acta 74:21–25CrossRefGoogle Scholar
  312. Katz JJ, Manning WM (1952) Chemistry of the actinide elements. Annu Rev Nucl Sci 1:245–262CrossRefGoogle Scholar
  313. Katz JJ, Rabinowitch E (1951) The chemistry of uranium, Pt. 1. McGraw-Hill, New York, S 564–577Google Scholar
  314. Keenan TK (1961) First observation of aqueous tetravalent curium. J Am Chem Soc 83(17):3719–3720CrossRefGoogle Scholar
  315. Keenan TK, Asprey LB (1969) Lattice constants of actinide tetrafluorides including berkelium. Inorg Chem 8(2):235–238.  https://doi.org/10.1021/ic50072a011 CrossRefGoogle Scholar
  316. Keller C (1969/1970) Die Chemie des Neptuniums. Fortschr Chem Forsch 13(1):1–124.  https://doi.org/10.1007/BFb0051170
  317. Keller C (1971) The chemistry of the transuranium elements. Verlag Chemie, Weinheim, S 544Google Scholar
  318. Keller C, Seiffert H (1969) Li5NpO6, die erste kristalline Verbindung mit siebenwertigem Neptunium; zur Frage der Existenz von siebenwertigem Plutonium und Americium. Inorg Nucl Chem Lett 5:51–57.  https://doi.org/10.1016/0020-1650(69)80236-9 CrossRefGoogle Scholar
  319. Keller C et al (1965) Die Reaktion der Oxide der Transurane mit Alkalioxiden – I: Ternäre Oxide der sechswertigen Transurane mit Lithium und Natrium. J Inorg Nucl Chem 27:1205–1223.  https://doi.org/10.1016/0022-1902(65)80083-5 CrossRefGoogle Scholar
  320. Kern S et al (1994) Temperature variation of the structural parameters in actinide tetrafluorides. J Chem Phys 101:9333–9337.  https://doi.org/10.1063/1.467963 CrossRefGoogle Scholar
  321. Kessie RW (1967) Plutonium and uranium hexafluoride hydrolysis kinetics. Ind Eng Chem Proc Des Dev 6(1):105–111.  https://doi.org/10.1021/i260021a018 CrossRefGoogle Scholar
  322. Khuyagbaatar J et al (2014) ( 48Ca + 249Bk fusion reaction leading to element Z = 117: long-lived α-Decaying 270Db and discovery of 266Lr. Phys Rev Lett 112(17):172501.  https://doi.org/10.1103/PhysRevLett.112.172501 CrossRefPubMedPubMedCentralGoogle Scholar
  323. Kim KC, Mulford RN (1990) Vibrational properties of actinide (U, Np, Pu, Am) hexafluoride molecules. J Mol Struct 207(3–4):293–299.  https://doi.org/10.1016/0166-1280(90)85031-H CrossRefGoogle Scholar
  324. Kimura M et al (1968) Electron-diffraction investigation of the hexafluorides of tungsten, osmium, iridium, uranium, neptunium, and plutonium. J Chem Phys 48(8):4001–4012.  https://doi.org/10.1063/1.1669727 CrossRefGoogle Scholar
  325. King D et al (2012) Synthesis and structure of a terminal uranium nitride complex. Science 337(6095):717–720.  https://doi.org/10.1126/science.1223488 CrossRefPubMedPubMedCentralGoogle Scholar
  326. Kirby HW et al (2006) Protactinium. In: Fuger et al (Hrsg) The chemistry of the actinide and transactinide elements. Springer, Dordrecht, S 161–252. ISBN 1-4020-3555-1.  https://doi.org/10.1007/1-4020-3598-5 CrossRefGoogle Scholar
  327. Kirshenbaum I (1943) The physical properties of uranium hexafluoride, technical reports 2M-503; 2R-464; A-753. SAM Labs/U. S. Department of Energy.  https://doi.org/10.2172/4416966
  328. Kleinschmidt PD (1989) Sublimation studies of plutonium trifluoride. JNucl Mat 167:131–134.  https://doi.org/10.1016/0022-3115(89)90434-0 CrossRefGoogle Scholar
  329. Kleinschmidt PD et al (1984) Henry’s Law vaporization studies and thermodynamics of einsteinium-253 metal dissolved in ytterbium. J Chem Phys 81:473.  https://doi.org/10.1063/1.447328 CrossRefGoogle Scholar
  330. Kleinschmidt PD et al (1992a) Sublimation studies of NpF4. J Chem Phys 97:1950–1953.  https://doi.org/10.1063/1.463131 CrossRefGoogle Scholar
  331. Kleinschmidt PD et al (1992b) Sublimation studies of NpO2F2. J Phys Chem 97:2417–2421.  https://doi.org/10.1063/1.463080 CrossRefGoogle Scholar
  332. Koch G (1972a) Transurane. In: Gmelins Handbuch der anorganischen Chemie, Teil C, System- Nummer 71, Transurane, Teil C. Springer, Berlin/Heidelberg, S 7–10. / 33 / 57-67 / 101-106 / 154 / 168 / 187-189 / 194 / 209Google Scholar
  333. Koch G (1972b) Transurane. In: Gmelins Handbuch der anorganischen Chemie, Teil A 2, System-Nummer 71, Transurane, Bd 7a. Springer, Berlin/Heidelberg, S 289Google Scholar
  334. Koch G (1972c) Transurane. In: Gmelins Handbuch der anorganischen Chemie, Teil B 1, System- Nummer 71, Transurane, Bd 7a. Springer, Berlin/Heidelberg, S 57–68Google Scholar
  335. Koch L et al (1993) Verfahren zur Trennung von Stoffgemischen durch Lösungsmittelextraktion in wässrig/organischer Phase in Gegenwart von Laserstrahlung und dessen Anwendung zur Trennung von anorganischen und organischen Stoffgemischen. EP 0542179 A1, veröffentlicht 19. Mai 1993Google Scholar
  336. Konings RJM (2001) Thermochemical and thermophysical properties of curium and its oxides. J Nucl Mater 298(3):255–268.  https://doi.org/10.1016/S0022-3115(01)00652-3 CrossRefGoogle Scholar
  337. Kratz JV (2011) The impact of superheavy elements on the chemical and physical sciences. In: 4th international conference on the chemistry and physics of the transactinide elements, SochiGoogle Scholar
  338. Kroll P (2003) Hafnium nitride with thorium phosphide structure: physical properties and an assessment of the Hf-N, Zr-N, and Ti-N phase diagrams at high pressures and temperatures. Phys Rev Lett 90(12):125501PubMedCrossRefPubMedCentralGoogle Scholar
  339. Kronenberg A. PhD, Deutschland. http://www.kernchemie.de
  340. Kruger OL et al (1965) Preparation of plutonium monosulfide and plutonium monophosphide. US 3282656 A, veröffentlicht 26. März 1965Google Scholar
  341. Kruse FH, Asprey LB (1962) A crystalline fluoride complex of tetravalent americium. Inorg Chem 1(1):137–139.  https://doi.org/10.1021/ic50001a026 CrossRefGoogle Scholar
  342. Kruse FH et al (1965) Crystal structures of the trifluorides, trichlorides, tribromides, and triiodides of americium and curium. Inorg Chem 4(7):985–986.  https://doi.org/10.1021/ic50029a013 CrossRefGoogle Scholar
  343. Kugel R et al (1976) Isotope effects in the molecular spectrum of plutonium hexafluoride. J Chem Phys 65(9):3486–3492.  https://doi.org/10.1063/1.433575 CrossRefGoogle Scholar
  344. Kulyukhin SA (1983) High-speed method for the separation of fermium from actinides and lanthanides. Radiokhim 25(2):158–161Google Scholar
  345. Kumar N, Tuck DG (1984) The direct electrochemical synthesis of neutral and anionic halogen complexes of uranium(IV) and uranium(VI). Inorg Chim Acta 95(4):211–215.  https://doi.org/10.1016/S0020-1693(00)87469-1 CrossRefGoogle Scholar
  346. Laing M (2005) A revised periodic table: with the lanthanides repositioned. Found Chem 7(3):203.  https://doi.org/10.1007/s10698-004-5959-9 CrossRefGoogle Scholar
  347. Lange RG, Carroll WP (2008) Review of recent advances of radioisotope power systems. En Convers Manag 49(3):393–401CrossRefGoogle Scholar
  348. Larson AC et al (1964) The crystal structure of UF4. Acta Crystallogr 17:555–558.  https://doi.org/10.1107/S0365110X64001293 CrossRefGoogle Scholar
  349. Laubereau PG, Burns JH (1970) Microchemical preparation of tricyclopentadienyl compounds of berkelium, californium, and some lanthanide elements. Inorg Chem 9(5):1091–1095.  https://doi.org/10.1021/ic50087a018 CrossRefGoogle Scholar
  350. Lely D Jr, Hamburger L (1914) Herstellung der Elemente Thorium, Uran, Zirkon und Titan. Z Anorg Allg Chem 87(1):209–228.  https://doi.org/10.1002/zaac.19140870114 CrossRefGoogle Scholar
  351. Lemire RJ (2005) Chemical thermodynamics of neptunium and plutonium, 2. Aufl. Elsevier-Verlag, Amsterdam, S 352. ISBN 0-444-50379-XGoogle Scholar
  352. Lessler RM, Michel MC (1960) Isotopes Np240 and Np241. Phys Rev 118(1):263–264.  https://doi.org/10.1103/PhysRev.118.263 CrossRefGoogle Scholar
  353. Levy JH et al (1975a) The structure of uranium tribromide by neutron diffraction profile analysis. J Less Comm Met 39(2):265–270.  https://doi.org/10.1016/0022-5088(75)90200-3 CrossRefGoogle Scholar
  354. Levy JH et al (1975b) The structure of uranium(III) triiodide by neutron diffraction. Acta Crystallogr B 31:880–882.  https://doi.org/10.1107/S0567740875003986 CrossRefGoogle Scholar
  355. Levy JH et al (1976) Structure of fluorides. Part XII. single-crystal neutron diffraction study of uranium hexafluoride at 293 K. J Chem Soc Dalton Trans 3:219–224.  https://doi.org/10.1039/DT9760000219 CrossRefGoogle Scholar
  356. Levy JH et al (1980) Crystal structure of uranium(IV) tetraiodide by X-ray and neutron diffraction. Inorg Chem 19:672–674.  https://doi.org/10.1021/ic50205a019 CrossRefGoogle Scholar
  357. Levy JH et al (1983) Neutron powder structural studies of UF6, MoF6 and WF6 at 77 K. J Fluorine Chem 23(1):29–36.  https://doi.org/10.1016/S0022-1139(00)81276-2 CrossRefGoogle Scholar
  358. Lewis BE (1998) Oak Ridge National Laboratory, Oak Ridge, TN, USA. In: Lexikon der Physik. Springer, HeidelbergGoogle Scholar
  359. Lide DR (1993) CRC Handbook of chemistry and physics: a ready-reference book of chemicals. CRC Press, Boca Raton, S 4–27. ISBN 084930595-0Google Scholar
  360. Loopstra BO (1970a) The phase transition in α-U3O8 at 210 °C. J Appl Cryst 3:94–96.  https://doi.org/10.1107/S002188987000571X CrossRefGoogle Scholar
  361. Loopstra BO (1970b) The structure of β-U3O8. Acta Crystallogr B 26:656–657.  https://doi.org/10.1107/S0567740870002935 CrossRefGoogle Scholar
  362. Loopstra BO, Cordfunke EHP (1966) On the structure of alpha UO3. Rec Trav Chim Pays-Bas Belg 85:135–142CrossRefGoogle Scholar
  363. Loopstra BO et al (1977) Neutron powder profile studies of the gamma uranium trioxide phases. J Solid State Chem 20:9–19.  https://doi.org/10.1016/0022-4596(77)90046-9 CrossRefGoogle Scholar
  364. Los Alamos National Laboratories (2010). http://pubs.acs.org/cen/80th/neptunium.html
  365. Los Alamos Science (2000) Plutonium – an element that odds with itself. http://www.fas.org/sgp/othergov/doe/lanl/pubs/00818006.pdf
  366. Lumetta GJ et al (2006) Curium. In: Fuger J et al (Hrsg) The chemistry of the actinide and transactinide elements. Springer, Dordrecht, S 1397–1443. ISBN 1-4020-3555-1.  https://doi.org/10.1007/1-4020-3598-5_9 CrossRefGoogle Scholar
  367. Lundqvist RH et al (1981) Electromigration method in tracer studies of complex chemistry. II. Hydrated radii and hydration numbers of trivalent actinides. Acta Chem Scand A 35:653–661.  https://doi.org/10.3891/acta.chem.scand.35a-0653 CrossRefGoogle Scholar
  368. MacDonald MR et al (2013) Identification of the +2 oxidation state for uranium in a crystalline molecular complex, [K(2.2.2-Cryptand)][(C5H4SiMe3)3U]. J Am Chem Soc 135:13310–13313.  https://doi.org/10.1021/ja406791t CrossRefPubMedPubMedCentralGoogle Scholar
  369. Macintyre JE et al (1992) Dictionary of inorganic compounds. Chapman and Hall, CRC Press, London, S. 2826 / 3511 / 3783. ISBN 978-0-412-30120-9CrossRefGoogle Scholar
  370. Malm JG et al (1955) Infrared Spectra of NpF6 and PuF6. J Chem Phys 23:2192–2193.  https://doi.org/10.1063/1.1740700 CrossRefGoogle Scholar
  371. Malm JG et al (1958) The preparation and properties of NpF6; a comparison with PuF6. J Phys Chem 62(12):1506–1508.  https://doi.org/10.1021/j150570a009 CrossRefGoogle Scholar
  372. Malm JG et al (1959) Vapour-Pressures of NpF6 and PuF6; Thermodynamic calculations with UF6, NpF6 and PuF6. J Inorg Nucl Chem 11(2):104–114.  https://doi.org/10.1016/0022-1902(59)80054-3 CrossRefGoogle Scholar
  373. Malm JG et al (1984) Low temperature synthesis of plutonium hexafluoride using dioxygen difluoride. J Am Chem Soc 106(9):2726–2727.  https://doi.org/10.1021/ja00321a056 CrossRefGoogle Scholar
  374. Malý J (1967) The amalgamation behaviour of heavy elements 1. Observation of anomalous preference in formation of amalgams of californium, einsteinium, and fermium. Inorg Nucl Chem Lett 3(9):373–381.  https://doi.org/10.1016/0020-1650(67)80046-1 CrossRefGoogle Scholar
  375. Mandleberg CJ et al (1953) Plutonium hexafluoride, Part I, preparation and some physical properties, Report A.E.R.E. C/R-1172. Atomic Energy Research Establishment, HarwellGoogle Scholar
  376. Mandleberg CJ et al (1956) Plutonium hexafluoride. JInorg Nucl Chem 2(5–6):358–367.  https://doi.org/10.1016/0022-1902(56)80090-0 CrossRefGoogle Scholar
  377. Marsden C et al (2008) Simple N≡UF3 and P≡UF3 molecules with triple bonds to uranium. Angew Chem Int Ed 47(29):5366–5370.  https://doi.org/10.1002/anie.200801120 CrossRefGoogle Scholar
  378. Martella LL et al (1984) Laboratory-scale evaluations of alternative plutonium precipitation methods. United States Office of Scientific and Technical Information, Oak RidgeCrossRefGoogle Scholar
  379. Martienssen W, Warlimont H (2006) Springer handbook of condensed matter and materials data. Springer, Berlin/Heidelberg, S 462–464. ISBN 3-540-30437-1Google Scholar
  380. Martin WC et al (1974) Ground levels and Ionization potentials for lanthanide and actinide atoms and ions. J Phys Chem Ref Data Monogr 3(3):771–779.  https://doi.org/10.1063/1.3253147 CrossRefGoogle Scholar
  381. Martin RC et al (2000) Applications of californium-252 neutron sources. Appl Radiat Isot 53(4–5):785–792PubMedCrossRefPubMedCentralGoogle Scholar
  382. Masi JF (1949) The heats of vaporization of uranium hexafluoride. J Chem Phys 17:755–758.  https://doi.org/10.1063/1.1747395 CrossRefGoogle Scholar
  383. Matthews RB et al (1988) Fabrication and testing of uranium nitride fuel for space power reactors. J Nucl Mat 151(3):345.  https://doi.org/10.1016/0022-3115(88)90029-3 CrossRefGoogle Scholar
  384. McDonald BJ, Stuart WI (1960) The crystal structures of some plutonium borides. Acta Crystallogr 13:447–448.  https://doi.org/10.1107/S0365110X60001059 CrossRefGoogle Scholar
  385. McGuire SA (1991) Chemical toxicity of uranium hexafluoride compared to acute effects of radiation, NUREG-1391. U.S. Nuclear Regulatory Commission, RockvilleCrossRefGoogle Scholar
  386. McKay A (1984) The making of the atomic age. Oxford University Press, OxfordGoogle Scholar
  387. McManus JF et al (2004) Collapse and rapid resumption of atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837PubMedCrossRefPubMedCentralGoogle Scholar
  388. McMillan E, Abelson PH (1940) Radioactive element 93. Phys Rev 57:1185–1186.  https://doi.org/10.1103/PhysRev.57.1185.2 CrossRefGoogle Scholar
  389. McNamara B et al (2009) Thermal reactions of uranium metal, UO2, U3O8, UF4, and UO2F2 with NF3 to produce UF6. J Nucl Mat 394(2–3):166–173.  https://doi.org/10.1016/j.jnucmat.2009.09.004 CrossRefGoogle Scholar
  390. McWhan DB et al (1962) Crystal structure, thermal expansion and melting point of Americium metal. J Inorg Nucl Chem 24(9):1025–1038CrossRefGoogle Scholar
  391. McWhan DB et al (1990) Magnetic x-ray-scattering study of uranium arsenide. Phys Rev B Cond Matter 42(10):6007–6017CrossRefGoogle Scholar
  392. Meek T et al (2000) Semiconductive properties of uranium oxides. Materials Science Engineering Department, University of Tennessee, KnoxvilleGoogle Scholar
  393. Meitner L (1906a) Wärmeleitung in inhomogenen Körpern. Dissertation, II. Physikalisches Institut der k. k. Universität WienGoogle Scholar
  394. Meitner L (1906b) Über die Absorption der α- und β-Strahlen. Phys Z 7:588–590Google Scholar
  395. Meitner L, Hahn O (1919) Über das Protactinium und die Frage nach der Möglichkeit seiner Herstellung als chemisches Element. Naturwiss 7(33):611–612.  https://doi.org/10.1007/BF01498184 CrossRefGoogle Scholar
  396. Mendelejew DI (1871) Zur Frage über das System der chemischen Elemente. Ber Dt Chem Ges 4:348–352CrossRefGoogle Scholar
  397. Mendelejew DI (1880) Zur Geschichte des periodischen Gesetzes. Ber Dt Chem Ges 12:1796–1804CrossRefGoogle Scholar
  398. Mendelejew DI Die periodische Gesetzmässigkeit der chemischen Elemente. J Lieb Ann Chem Pharm Suppl 8(2):1871Google Scholar
  399. Meyer L (1873) Zur Systematik der anorganischen Chemie. Ber Dt Chem Ges 6:101–106CrossRefGoogle Scholar
  400. Meyer L (1880) Zur Geschichte der periodischen Atomistik. Ber Dt Chem Ges 13:259–265CrossRefGoogle Scholar
  401. Meyer K (2014) Synthesis and characterization of a uranium(II) monoarene complex supported by δ backbonding. Angew Chem Int Ed 53(28):7158–7162.  https://doi.org/10.1002/anie.201402050 CrossRefGoogle Scholar
  402. Meyer G, Morss LR (1991) Synthesis of lanthanide and actinide compounds. Springer, Dordrecht, S 77. ISBN 0-7923-1018-7CrossRefGoogle Scholar
  403. Mihalisin TW et al (1980) Crystalline electric field and structural effects in f-electron systems. Plenum Press, New York, S 269–274. ISBN 0-306-40443-5Google Scholar
  404. Mikheev NB et al (1972) Reduction of fermium to divalent state in chloride aqueous ethanolic solutions. Inorg Nucl Chem Lett 8(11):929–936.  https://doi.org/10.1016/0020-1650(72)80202-2 CrossRefGoogle Scholar
  405. Mikheev NB et al (1977) Determination of oxidation potential of the pair Fm2+/Fm3+. Inorg Nucl Chem Lett 13(12):651–656.  https://doi.org/10.1016/0020-1650(77)80074-3 CrossRefGoogle Scholar
  406. Mikheev NB et al (1983) High-speed method for the separation of fermium from actinides and lanthanides. Radiokhim 25(2):158–161Google Scholar
  407. Mills TR, Reese LW (1994) Separation of plutonium and americium by low-temperature fluorination. J Alloys Compd 213–214:360–362.  https://doi.org/10.1016/0925-8388(94)90931-8 CrossRefGoogle Scholar
  408. Milman V et al (2003) Crystal structures of curium compounds: an ab initio study. J Nucl Mat 322(2-3):165–179CrossRefGoogle Scholar
  409. Milner GWC et al (1966) The analysis of plutonium silicides and plutonium silicon carbides, Report AERE-R 5280. United Kingdom Atomic Energy Authority, HarwellGoogle Scholar
  410. Minato K et al (2003) Fabrication of nitride fuels for transmutation of minor actinides. J Nucl Mat 320(1–2):18–24.  https://doi.org/10.1016/S0022-3115(03)00163-6 CrossRefGoogle Scholar
  411. Mondal JU et al (1987) The enthalpy of solution of 243Am metal and the standard enthalpy of formation of Am3+ (aq). Thermochim Acta 116:235–240CrossRefGoogle Scholar
  412. Mooney RCL (1949) The crystal structure of ThCl4 and UCl4. Acta Crystallogr 2:189–191.  https://doi.org/10.1107/S0365110X49000485 CrossRefGoogle Scholar
  413. Morss LR et al (1987) Enthalpy of formation and magnetic susceptibility of californium sesquioxide, Cf2O3. J Less Comm Met 127:251–257.  https://doi.org/10.1016/0022-5088(87)90385-7 CrossRefGoogle Scholar
  414. Morss LR et al (1993) Preparation, chemical reactions, and some physical properties of neptunium pentafluoride. J Alloys Compd 194(1):133–137.  https://doi.org/10.1016/0925-8388(93)90658-A CrossRefGoogle Scholar
  415. Morss LR et al (1994) Structural studies of Li5ReO6, Li4NpO5 and Li5NpO6 by neutron and X-ray powder diffraction. J Alloys Compd 203:289–295.  https://doi.org/10.1016/0925-8388(94)90748-x CrossRefGoogle Scholar
  416. Moser WS, Navratil JD (1984) Review of major plutonium pyrochemical technology. J Less Comm Met 100:171–187.  https://doi.org/10.1016/0022-5088(84)90062-6 CrossRefGoogle Scholar
  417. Mosley WC (1972) Phases and transformations in the curium-oxygen system. J Inorg Nucl Chem 34(2):539–555.  https://doi.org/10.1016/0022-1902(72)80434-2 CrossRefGoogle Scholar
  418. Nagame Y et al (2009) Oxidation of element 102, nobelium, with flow electrolytic column chromatography on an atom-at-a-time scale. J Am Chem Soc 131(26):9180–9181PubMedCrossRefPubMedCentralGoogle Scholar
  419. Nakajima und T, Groult H (2005) Fluorinated materials for energy conversion. Elsevier-Verlag, Amsterdam, S 559Google Scholar
  420. Natkunarajah J, Cliff S (2009) Thorium X treatment: multiple basal cell carcinomas within a port-wine stain. Clin Exper Dermatol 34:e189–e191.  https://doi.org/10.1111/j.1365-2230.2008.03012.x CrossRefGoogle Scholar
  421. Nave SE et al (1986) Magnetic susceptibility of CfN, CfAs and CfSb. J Less Comm Met 121:319–324.  https://doi.org/10.1016/0022-5088(86)90548-5 CrossRefGoogle Scholar
  422. Nave SE et al (1987) Magnetic susceptibility of CfCl3 and its dependence on crystal structure. J Less Comm Met 127:79–85.  https://doi.org/10.1016/0022-5088(87)90361-4 CrossRefGoogle Scholar
  423. Neck V et al (1992) Solubility and hydrolysis behaviour of neptunium(V). Radiochim Acta 56:25–30CrossRefGoogle Scholar
  424. Nikonov MV et al (1994) Synthesis and characterization of Np(VI, VII) mixed-valence compound. Radiochem 36:237–238Google Scholar
  425. Nilsson S, Jonsson M (2011) H2O2 and radiation induced dissolution of UO2 and SIMFUEL pellets. J Nucl Mat 410(1–3):89–93.  https://doi.org/10.1016/j.jnucmat.2011.01.020 CrossRefGoogle Scholar
  426. Nishimura M, Sugikawa S (1979) Method for purifying plutonium hexafluoride. US 4172114, Japan Atomic Energy Research Institute, veröffentlicht 23. Oktober 1979Google Scholar
  427. Noddack I (1934a) Das Periodische System der Elemente und seine Lücken. Angew Chem 47(20):301–305.  https://doi.org/10.1002/ange.19340472002 CrossRefGoogle Scholar
  428. Noddack I (1934b) Über das Element 93. Angew Chem 47(37):653–655.  https://doi.org/10.1002/ange.19340473707 CrossRefGoogle Scholar
  429. Noé M, Fuger J (1971) Self-radiation effects on the lattice parameter of 244CmO2. Inorg Nucl Chem Lett 7(5):421–430.  https://doi.org/10.1016/0020-1650(71)80177-0 CrossRefGoogle Scholar
  430. Noé M, Peterson JR (1975) Preparation and study of elemental californium-249. In: Proceedings of the fourth international symposium on the transplutonium elements. North-Holland Publishing Co., Amsterdam/Baden-Baden, 13.–17. Sept 1975Google Scholar
  431. Noé M et al (1970) Some recent Observations on Curium Sesquioxide. Inorg Nucl Chem Lett 6(1):111–119.  https://doi.org/10.1016/0020-1650(70)80294-X CrossRefGoogle Scholar
  432. Noël H (1996) Crystal structure and physical properties of β-USe2 and USe2−xTex (x= 0.24 and 0.72). J Solid State Chem 126:22–26.  https://doi.org/10.1006/jssc.1996.0304 CrossRefGoogle Scholar
  433. Noël H et al (2000) A new ternary uranium arsenide, U4Ru7As6. J Alloys Compd 302(1–2):L1–L2.  https://doi.org/10.1016/S0925-8388(99)00584-8 CrossRefGoogle Scholar
  434. Novion CH de, Lorenzelli R (1968) Proprietes electroniques du monocarbure et du mononitrure de neptunium. J Phys Chem Solid 29(10):1901–1905.  https://doi.org/10.1016/0022-3697(68)90174-1 CrossRefGoogle Scholar
  435. Nugent LJ (1975) MTP. Int Rev Sci, Inorg Chem, Ser One 7:195–219Google Scholar
  436. Nugent LJ et al (1969) Intramolecular energy transfer and sensitized luminescence in actinide(III) .beta.-diketone chelates. J Phys Chem 73(5):1540–1549.  https://doi.org/10.1021/j100725a060 CrossRefGoogle Scholar
  437. Nugent LJ et al (1974) Electronic configuration in the ground state of atomic lawrencium. Phys Rev A 9(6):2270–2272.  https://doi.org/10.1103/PhysRevA.9.2270 CrossRefGoogle Scholar
  438. Nurmia M (2003) Nobelium. Chem Eng News 81(36):27–29CrossRefGoogle Scholar
  439. Oak Ridge National Laboratory (1984) The chemistry of berkelium. Adv Inorg Chem Radiochem 28:42Google Scholar
  440. OECD Nuclear Energy Agency und Internationale Atomenergieorganisation (2008) Uranium 2007: resources, production and demand. OECD Publishing, Washington DC. ISBN 978-92-64-04768-6Google Scholar
  441. Okamoto Y et al (1998) Structure and dynamic properties of molten uranium trichloride. J Alloys Compd 271–273:355–358.  https://doi.org/10.1016/S0925-8388(98)00087-5 CrossRefGoogle Scholar
  442. Okamoto Y et al (2005) X-ray diffraction and molecular dynamics simulation studies of molten uranium chloride. J Nucl Mater 344(1–3):109–114.  https://doi.org/10.1016/j.jnucmat.2005.04.026 CrossRefGoogle Scholar
  443. Oliver GD et al (1953) The vapor pressure and critical constants of uranium hexafluoride. J Am Chem Soc 75(12):2827–2829.  https://doi.org/10.1021/ja01108a011 CrossRefGoogle Scholar
  444. Olson WM, Mulford RNR (1966) The melting point and decomposition pressure of neptunium mononitride. J Phys Chem 70:2932–2934.  https://doi.org/10.1021/j100881a035 CrossRefGoogle Scholar
  445. Ono F et al (1971) Preparation of uranium phosphide from uranium tetrafluoride. J Nucl Sci Tech 8(10):553–557CrossRefGoogle Scholar
  446. Östlin A, Vitos L (2011) First-principles calculation of the structural stability of 6d transition metals. Phys Rev B 84(11):113104.  https://doi.org/10.1103/PhysRevB.84.113104 CrossRefGoogle Scholar
  447. Paine RT et al (1974) Vibrational spectrum and force field of uranium hexafluoride. J Chem Phys 61(9):3571–3580.  https://doi.org/10.1063/1.1682537 CrossRefGoogle Scholar
  448. Pattison Muir MM (1975) A history of chemical theories and laws. Arno Press, New York, S 353–375Google Scholar
  449. Peacock RD, Edelstein N (1976) Some reactions of neptunium hexafluoride. J Inorg Nucl Chem 38:771–773.  https://doi.org/10.1016/0022-1902(76)80353-3 CrossRefGoogle Scholar
  450. Peacock RD, Edelstein N (1997) High pressure X-ray diffraction experiments on NpS and PuS up to 60 GPa. High Press Res 15(6):387–392.  https://doi.org/10.1080/08957959708240482 CrossRefGoogle Scholar
  451. Peehs M et al (2007) Uranium, uranium alloys, and uranium compounds. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim.  https://doi.org/10.1002/14356007.a27_281.pub2 CrossRefGoogle Scholar
  452. Peggs S et al (2012) Thorium energy futures. In: Proceedings of IPAC, New OrleansGoogle Scholar
  453. Penneman RA, Mann JB (1976) Calculation chemistry of the superheavy elements; comparison with elements of the 7th period. In: Proceedings of the Moscow symposium on the chemistry of transuranium elements, S 257–263.  https://doi.org/10.1016/B978-0-08-020638-7.50053-1 CrossRefGoogle Scholar
  454. Penneman RA et al (1973) Structural systematics in actinide fluoride complexes. Struct Bond 13:1–52CrossRefGoogle Scholar
  455. Peppard DF et al (1951) Isolation of microgram quantities of naturally-occurring plutonium and examination of its isotopic composition. J Am Chem Soc 73(6):2529–2531CrossRefGoogle Scholar
  456. Pereira CCL et al (2013) Synthesis and properties of uranium sulfide cations. An evaluation of the stability of thiouranyl, {S=U=S}2+. Inorg Chem 52(24):14162–14167.  https://doi.org/10.1021/ic4020493 CrossRefPubMedPubMedCentralGoogle Scholar
  457. Pernel C et al (2001) Partitioning of americium metal from rare earth fission products by electrorefining. In: Proceedings on pyrochemical separations. Nuclear Energy Agency, OECD Workshop, Avignon, S 275–284. ISBN 978-92-64-18443-5Google Scholar
  458. Perry DL (2011) Handbook of inorganic compounds, 2. Aufl. CRC Press, Boca Raton, S 488–489CrossRefGoogle Scholar
  459. Persson K (2016) Materials data on Np3Te4 by materials project.  https://doi.org/10.17188/1274723
  460. Peterson JR (1967) The solution absorption spectrum of Bk3+ and the crystallography of berkelium dioxide, sesquioxide, trichloride, oxychloride, and trifluoride. PhD thesis, U. S. Atomic Energy Commission, UCRL-17875Google Scholar
  461. Peterson JR, Burns JH (1968) Preparation and crystal structure of californium oxyfluoride, CfOF. J Inorg Nucl Chem 30(11):2955–2958.  https://doi.org/10.1016/0022-1902(68)80155-1 CrossRefGoogle Scholar
  462. Peterson JR, Burns JH (1973) Single crystal and powder diffraction studies of curium-248 trichloride, 248CmCl3. J Inorg Nucl Chem 35:1525–1530CrossRefGoogle Scholar
  463. Peterson JR, Cunningham BB (1967) Crystal structures and lattice parameters of the compounds of Berkelium I. Berkelium dioxide and cubic berkelium sesquioxide. Inorg Nucl Chem Lett 3(9):327–336CrossRefGoogle Scholar
  464. Peterson JR, Cunningham BB (1968a) Crystal structures and lattice parameters of the compounds of berkelium IV. Berkelium trifluoride. J Inorg Nucl Chem 30(7):1775–1784.  https://doi.org/10.1016/0022-1902(68)80353-7 CrossRefGoogle Scholar
  465. Peterson JR, Cunningham BB (1968b) Crystal structures and lattice parameters of the compounds of Berkelium II. Berkelium trichloride. J Inorg Nucl Chem 30(3):823–828CrossRefGoogle Scholar
  466. Peterson JR, Hobart DE (1984) The chemistry of Berkelium. In: Emeléus HJ (Hrsg) Advances in inorganic chemistry and radiochemistry. Academic Press, Cambridge, S 53. ISBN 0-12-023628-1Google Scholar
  467. Peterson JR et al (1969) The solution absorption spectrum of Es3+. Inorg Nucl Chem Lett 5(4):245–250CrossRefGoogle Scholar
  468. Peterson JR et al (1971) The crystal structures and lattice parameters of berkelium metal. J Inorg Nucl Chem 33(10):3345–3351.  https://doi.org/10.1016/0022-1902(71)80656-5 CrossRefGoogle Scholar
  469. Peterson JR et al (1978) Spectrophotometric studies of transcurium element halides and oxyhalides in the solid state. J Radioanal Chem 43(2):479–488CrossRefGoogle Scholar
  470. Peterson JR et al (1983) X-ray Diffraction study of californium metal to 16 GPa. J Less Comm Met 93(2):353–356CrossRefGoogle Scholar
  471. Peterson JR et al (1986) Absorption spectrophotometric and X-ray diffraction studies of the trichlorides of berkelium-249 and californium-249. Inorg Chem 25(21):3779–3782.  https://doi.org/10.1021/ic00241a015 CrossRefGoogle Scholar
  472. Pietsch EHE (1977) Uran. In: Gmelins Handbuch der anorganischen Chemie, Teil A, System-Nummer 55, Teil A. Springer, Berlin/Heidelberg, S 121–123Google Scholar
  473. Podorozhnyi AM et al (1977) Determination of oxidation potential of the pair Fm2+/Fm3+. Inorg Nucl Chem Lett 13(12):651–656CrossRefGoogle Scholar
  474. Polinski MJ et al (2014) Unusual structure, bonding and properties in a californium borate. Nat Chem 6(5):387–392.  https://doi.org/10.1038/nchem.1896 CrossRefPubMedPubMedCentralGoogle Scholar
  475. Porter JA (1964) Production of neptunium dioxide. Ind Eng Chem Proc Design Devel 3(4):289–292.  https://doi.org/10.1021/i260012a001 CrossRefGoogle Scholar
  476. Porter CE et al (1997) Fermium purification using Teva Resin extraction chromatography. Sep Sci Technol 32(1–4):83–92.  https://doi.org/10.1080/01496399708003188 CrossRefGoogle Scholar
  477. Pötsch WR (1988) Lexikon bedeutender Chemiker. Bibliographisches Institut, Leipzig, S 324. ISBN 3-323-00185-0Google Scholar
  478. Punjak WA et al (2001) Americium Extraction via in Situ Chlorination of Plutonium Metal. In: Proceedings on pyrochemical separations. Nuclear Energy Agency, OECD Workshop, Avignon, S 275–284. ISBN 978-92-64-18443-5Google Scholar
  479. Rabideau SW, Campbell GM (1987) Photochemical preparation of plutonium pentafluoride. US 4670239, US Energy Department, veröffentlicht 2. Juni 1987Google Scholar
  480. Radchenko VM (2004) Synthesis and study of binary actinide and lanthanide compounds: XXV. Curium carbides. Radiochem 46(1):6–11CrossRefGoogle Scholar
  481. Rao L et al (2006) Thermodynamics of Neptunium(V) Fluoride and sulfate at elevated temperatures, report # 59805. Lawrence Berkeley National Laboratory, BerkeleyCrossRefGoogle Scholar
  482. Raschella DL et al (1982) First determination of the enthalpy of solution of californium metal. Radiochim Acta 30:41–43CrossRefGoogle Scholar
  483. Rezendes VS (1992) Plutonium processing in the nuclear weapons complex. Diane Publishing Co., Collingdale, S 21. ISBN 978-1-56806-568-7Google Scholar
  484. Richter K, Sari C (1987) Phase relationships in the neptunium-oxygen system. J Nucl Mat 148(3):266–271.  https://doi.org/10.1016/0022-3115(87)90019-5 CrossRefGoogle Scholar
  485. Rife P (1992) Lise Meitner and the dawn of the nuclear age. Birkhäuser-Verlag, BerlinGoogle Scholar
  486. Rivard MJ (2006) Dosimetry for Californium-252 (252Cf) Neutron-emitting Brachytherapy Sources and Encapsulation, Storage, and Clinical Delivery Thereof. US 7118524, New England Medical Center Inc., veröffentlicht 10. Oktober 2006Google Scholar
  487. Roberts KE et al (2003) Precipitation of crystalline neptunium dioxide from near-neutral aqueous solution. Radiochim Acta 91(2):87–92CrossRefGoogle Scholar
  488. Roddy JW (1974) Americium metallides: AmAs, AmSb, AmBi, Am3Se4, and AmSe2. J Inorg Nucl Chem 36(11):2531–2533.  https://doi.org/10.1016/0022-1902(74)80466-5 CrossRefGoogle Scholar
  489. Rodriguez G et al (2011) Ultrafast hopping dynamics of 5f electrons in the mott insulator UO2 studied by femtosecond pump-probe spectroscopy. Phys Rev Lett 107(20):207402–207405.  https://doi.org/10.1103/PhysRevLett.106.207402 CrossRefGoogle Scholar
  490. Roesch N, Streitwieser A (1983) Quasirelativistic SCF-Xalpha Scattered-wave study of uranocene, thorocene, and cerocene. J Am Chem Soc 105(25):7237–7240.  https://doi.org/10.1021/ja00363a004 CrossRefGoogle Scholar
  491. Røst S (2019) Private MitteilungGoogle Scholar
  492. Ronen Y et al (2000) A novel method for energy production using 242mAm as a nuclear fuel. Nucl Technol 129(3):407–417CrossRefGoogle Scholar
  493. Rosenheim A et al (1903) Über Verbindungen des Thoriums. Z Anorg Chem 35:424–453.  https://doi.org/10.1002/zaac.19030350157 CrossRefGoogle Scholar
  494. Ruff O (1909) Über einige neue Fluoride. Chem Ber 42(1):495–497.  https://doi.org/10.1002/cber.19090420175 CrossRefGoogle Scholar
  495. Ruff O, Heinzelmann A (1911) Über das Uranhexafluorid. Z Anorg Chem 72(1):63–84.  https://doi.org/10.1002/zaac.19110720106Deutschland, 1999). ISBN 0-8176-3732-XCrossRefGoogle Scholar
  496. Runde WH, Schulz WW (2006) Americium. In: Fuger et al (Hrsg) The chemistry of the actinide and transactinide elements. Springer, Dordrecht, S 1265–1395. ISBN 1-4020-3555-1.  https://doi.org/10.1007/1-4020-3598-5_8 CrossRefGoogle Scholar
  497. Salvato D (2016) Innovative preparation route for uranium carbide using citric acid as a carbon source. Ceram Int 42(15):16710–16717CrossRefGoogle Scholar
  498. Sato TK et al (2015) Measurement of the first ionization potential of lawrencium, element 103. Nature 520:209–211.  https://doi.org/10.1038/nature14342. PMID 25855457CrossRefPubMedPubMedCentralGoogle Scholar
  499. Satyanarayana BS (1942) The fluorescence of the uranyl compounds and the raman spectrum of the uranyl ion. Proc Math Sci 15(5):414–416CrossRefGoogle Scholar
  500. Schleid T et al (1987) Ternary chlorides of americium, A2AmCl5 (A = K, NH4, Rb) and a facile synthesis of americium trichloride, AmCl3. J Less Comm Met 127:183–187CrossRefGoogle Scholar
  501. Schmidt F (1906) Kompendium der praktischen Photographie, 10. Aufl. Nemnich-Verlag, Leipzig, S. 191 / 268 / 291/339Google Scholar
  502. Schubert F (2009) Die deutsche Marie Curie, Berühmte Niederrheiner. Rheinische Post, Düsseldorf, Bd 36, B 6, 15. August 2009Google Scholar
  503. Schück H et al (1972) The man and his prizes, 3. Aufl. Elsevier Publishing Company, Inc., New York. ISBN 978-0-444-00117-7Google Scholar
  504. Scott RB et al (1948) The low temperature heat capacities, enthalpies, and entropies of UF4 and UF6. J Chem Phys 16:429–436.  https://doi.org/10.1063/1.1746914 CrossRefGoogle Scholar
  505. Seaborg GT (1942) Metallurgical laboratory report CN-125. University of Chicago, ChicagoGoogle Scholar
  506. Seaborg GT (1946) The transuranium elements. Science 104(2704):379–386PubMedCrossRefPubMedCentralGoogle Scholar
  507. Seaborg GT, Brown HS (1961) Preparation of neptunium hexafluoride. US 2982604, veröffentlicht 25. April 1961Google Scholar
  508. Seaborg GT et al (1949a) The new element americium (Atomic Number 95). In: The transuranium elements: research papers, paper no. 22.1. McGraw-Hill Book Co., Inc., New YorkGoogle Scholar
  509. Seaborg GT et al (1949b) The new element curium (atomic number 96), National Nuclear Energy Series, Plutonium Project Record, Bd. 14 B. In: The transuranium elements: research papers, paper no. 22.2. McGraw-Hill Book Co., Inc., New YorkGoogle Scholar
  510. Seaborg GT et al (1950a) New isotopes of neptunium. Phys Rev 78(4):363–372.  https://doi.org/10.1103/PhysRev.78.363 CrossRefGoogle Scholar
  511. Seaborg GT et al (1950b) The isotopes of americium. Phys Rev 79(3):530–531.  https://doi.org/10.1103/PhysRev.79.530 CrossRefGoogle Scholar
  512. Seaborg GT et al (1950c) Chemical properties of berkelium. J Am Chem Soc 72(10):4832–4835Google Scholar
  513. Seaborg GT et al (1950d) The new element berkelium (atomic number 97). Phys Rev 80(5):781–789CrossRefGoogle Scholar
  514. Seaborg GT et al (1955a) New element mendelevium, atomic number 101. Phys Rev 98(5):1518–1519CrossRefGoogle Scholar
  515. Seaborg GT et al (1955b) Radiation Laboratory and Department of Chemistry, University of California, Berkeley, CA, USA W. M. Manning et al., Argonne National Laboratory, Lemont, IL, USA R. W. Spence et al., Los Alamos Scientific Laboratory, Los Alamos, NM, USA, New elements einsteinium and fermium, atomic numbers 99 and 100. Phys Rev 99(3):1048–1049CrossRefGoogle Scholar
  516. Seaborg GT et al (1958) Element No. 102. Phys Rev Lett 1(1):18–21CrossRefGoogle Scholar
  517. Seaborg GT et al (2000) The transuranium people, the inside story. Imperial College Press, S 190–191. ISBN 978-1-86094-087-3Google Scholar
  518. Seelmann-Eggebert W et al (2006) Karlsruher Nuklidkarte, 7. Aufl. Nucleonica, KarlsruheGoogle Scholar
  519. Seifritz W (1984) Nukleare Sprengkörper – Bedrohung oder Energieversorgung für die Menschheit. Thiemig-Verlag, München. ISBN 3-521-06143–4Google Scholar
  520. Seitz F, Turnbull D (1964) Solid state physics: advances in research and applications. Academic Press, New York, S 289–291. ISBN 0-12-607716–9Google Scholar
  521. Sellers PA (1954) The preparation of some protactinium compounds and the metal. J Am Chem Soc 76:5935–5938.  https://doi.org/10.1021/ja01652a011 CrossRefGoogle Scholar
  522. Serizawa H et al (2001) The estimation of the heat capacity of NpO2. J Chem Thermod 33(6):615–628.  https://doi.org/10.1006/jcht.2000.0775 CrossRefGoogle Scholar
  523. Serrano K et al (2000) Preparation of uranium by electrolysis in chloride melt. J Nucl Mater 282(2–3):137–145.  https://doi.org/10.1016/S0022-3115(00)00423-2 CrossRefGoogle Scholar
  524. Sewtz M et al (2003) First observation of atomic levels for the element fermium (Z=100). Phys Rev Lett 90(16):163002.  https://doi.org/10.1103/PhysRevLett.90.163002 CrossRefPubMedPubMedCentralGoogle Scholar
  525. Sexl L, Hardy A (2002) Lise Meitner. Rowohlt-Verlag, Reinbek. ISBN 3-499-50439-1Google Scholar
  526. Seyam AM (1985) Observations on the reaction of uranium tetrachloride and dichlorodioxouranium(VI) with lithium alkyls. Inorg Chim Acta 10(2):123–126.  https://doi.org/10.1016/S0020-1693(00)84567-3 CrossRefGoogle Scholar
  527. Seyferth D (2004) Uranocene. The first member of a new class of organometallic derivatives of the f elements. Organomet 23(15):3562–3583.  https://doi.org/10.1021/om0400705 CrossRefGoogle Scholar
  528. Sharma BK (2001) Nuclear and radiation chemistry – transuranium elements. Krishna Prakashan Media, Meerut, S 128–129. ISBN 9788185842639Google Scholar
  529. Sheft I, Fried S (1953) Neptunium compounds. J Am Chem Soc 75:1236–1237.  https://doi.org/10.1021/ja01101a067 CrossRefGoogle Scholar
  530. Shein IR, Ivanovskii AL (2010) Ab initio study of elastic and electronic properties of cubic thorium pnictides ThPn and Th3Pn4 (Pn = P, As and Sb). https://arxiv.org/ftp/arxiv/papers/1009/1009.4282.pdf
  531. Siegel S et al (1966) The crystal structure of high-pressure UO3. Acta Crystallogr 20:292–295.  https://doi.org/10.1107/S0365110X66000562 CrossRefGoogle Scholar
  532. Sigmon GE et al (2009) Uranyl-peroxide interactions favor nanocluster self-assembly. J Am Chem Soc 131:16648–16649.  https://doi.org/10.1021/ja907837u CrossRefPubMedPubMedCentralGoogle Scholar
  533. Silva RJ (2006) Fermium, mendelevium, nobelium, and lawrencium. In: Fuger J et al (Hrsg) The chemistry of the actinide and transactinide elements, Bd 3, 3. Aufl. Springer, Dordrecht, S 1621–1651CrossRefGoogle Scholar
  534. Silva RJ et al (1995) Chemical thermodynamics of americium. In: Mompean FJ et al (Hrsg) Chemical thermodynamics, Bd 2. Elsevier-Verlag, Amsterdam, S 117Google Scholar
  535. Silva GWC et al (2008) Manufacturing methods for (U-Zr)N-fuels. Chem Mater 20:3076CrossRefGoogle Scholar
  536. Silva GWC et al (2009) Reaction sequence and kinetics of uranium nitride decomposition. Inorg Chem 48(22):10635–10642.  https://doi.org/10.1021/ic901165j CrossRefPubMedPubMedCentralGoogle Scholar
  537. Silva GWC et al (2012) Crystal and electronic structures of neptunium nitrides synthesized using a fluoride route. J Am Chem Soc 134(6):3111–3119.  https://doi.org/10.1021/ja209503n CrossRefPubMedPubMedCentralGoogle Scholar
  538. Sime RL (2001) Lise Meitner. Ein Leben für die Physik. Insel-Verlag, Frankfurt am Main/Leipzig. ISBN 3-458-17066-9Google Scholar
  539. Sluys WG van der et al (1992) Synthesis of actinide nitrides, phosphides, sulfides and oxides. US 5128112, U.S. Dept. of Energy, Washington, DC, veröffentlicht 7. Juli 1992Google Scholar
  540. Smirnov AI et al (1985) Production of microgram quantities of einsteinium-253 by the reactor irradiation of Californium. Inorg Chim Acta 110(1):25–26CrossRefGoogle Scholar
  541. Smithells A (1883) On some fluorine compounds of uranium. J Chem Soc, Trans 43:125–135.  https://doi.org/10.1039/CT8834300125 CrossRefGoogle Scholar
  542. Snyder MJ, Tripler AB Jr (1960) Some refractory uranium compounds – preparation and properties. American Society for Testing and Materials, ASTM InternationalGoogle Scholar
  543. Sokolov VB et al (2002) Low-Temperature Synthesis of Plutonium Hexafluoride. Atom Energy 92(1):57–63.  https://doi.org/10.1023/A:1015106730457 CrossRefGoogle Scholar
  544. Sokolov VB et al (2003) Reduction of plutonium hexafluoride using gaseous reagents. Atom Energy 95(4):701–708.  https://doi.org/10.1023/B:ATEN.0000010988.94533.24 CrossRefGoogle Scholar
  545. Spectrum.de (1998) Lexikon der Chemie – Plutoniumverbindungen. Springer, Berlin/HeidelbergGoogle Scholar
  546. Spirlet JC et al (1987) In: Emeléus HJ, Sharpe AG Advances in inorganic chemistry, Bd 31. Academic, Orlando S 1–41Google Scholar
  547. Stakebake JL et al (1993) Characterization of the plutonium-water reaction II: formation of a binary oxide containing Pu(VI). J Alloys Compd 202(1–2):251–263.  https://doi.org/10.1016/0925-8388(93)90547-Z CrossRefGoogle Scholar
  548. Steindler MJ (1963) Laboratory investigations in support of fluid-bed fluoride volatility processes, Part II, the properties of plutonium hexafluoride, report ANL-6753. Argonne National Laboratory, Lemont.  https://doi.org/10.2172/4170539 CrossRefGoogle Scholar
  549. Steindler MJ, Gunther WH (1964) The absorption spectrum of plutonium hexafluoride. Spectrochim Acta A 20(8):1319–1322.  https://doi.org/10.1016/0371-1951(64)80159-4 CrossRefGoogle Scholar
  550. Steindler MJ et al (1958) The fluorination of plutonium tetrafluoride, report ANL-5875. Argonne National Laboratory, LemontCrossRefGoogle Scholar
  551. Steindler MJ et al (1959) The fluorination of plutonium tetrafluoride and plutonium dioxide by fluorine. Nucl Sci Eng 6(4):333–340CrossRefGoogle Scholar
  552. Steindler MJ et al (1964) The decomposition of plutonium hexafluoride by gamma radiation. J Inorg Nucl Chem 26(11):1869–1878.  https://doi.org/10.1016/0022-1902(64)80011-7 CrossRefGoogle Scholar
  553. Stevenson JN, Peterson JR (1973) The trigonal and orthorhombic crystal structures of CfF3 and their temperature relationship. J Inorg Nucl Chem 35(10):3481–3486.  https://doi.org/10.1016/0022-1902(73)80356-2 CrossRefGoogle Scholar
  554. Stevenson JN, Peterson JR (1979) Preparation and structural studies of elemental curium-248 and the nitrides of Curium-248 and Berkelium-249. J Less Comm Met 66(2):201–210CrossRefGoogle Scholar
  555. Stevenson JN et al (1975) Crystallographic studies of some transuranic trihalides: 239PuCl3, 244CmBr3, 249BkBr3 and 249CfBr3. J Inorg Nucl Chem 37(3):743–749.  https://doi.org/10.1016/0022-1902(75)80532-X CrossRefGoogle Scholar
  556. Stirling WG et al (1983) Phonons in uranium antimonide and uranium arsenide. J Phys C: Solid State Phys 16(21):4093CrossRefGoogle Scholar
  557. Stites JG et al (1955) Preparation of actinium metal. J Am Chem Soc 77(1):237–240CrossRefGoogle Scholar
  558. Street K Jr et al (1950) Chemical properties of californium. J Am Chem Soc 72(10):4832.  https://doi.org/10.1021/ja01166a528 CrossRefGoogle Scholar
  559. Streitwieser A, Mueller-Westerhoff U (1968) Bis(cyclooctatetraenyl)uranium (uranocene). A new class of sandwich complexes that utilize atomic f orbitals. J Am Chem Soc 90(26):7364–7364.  https://doi.org/10.1021/ja01028a044 CrossRefGoogle Scholar
  560. Studier MH et al (1954) Elements 99 and 100 from Pile-Irradiated Plutonium. Phys Rev 93(6):1428.  https://doi.org/10.1103/PhysRev.93.1428 CrossRefGoogle Scholar
  561. Stump NA et al (1993) Stokes and anti-Stokes luminescence from the trihalides of curium-248. Radiochim Acta 61(3–4):129–136.  https://doi.org/10.1524/ract.1993.61.34.129 CrossRefGoogle Scholar
  562. Suzuki T (2007) Separation of americium and curium by use of tertiary pyridine resin in nitric acid/methanol mixed solvent system. J Radioanal Nucl Chem 272:257–262CrossRefGoogle Scholar
  563. Tabuteau A, Pagès M (1985) Neptunium. In: Freeman AJ, Keller C (Hrsg) Handbook on the physics and chemistry of the actinides, 3. Aufl. Elsevier-Verlag, Amsterdam, S 184–241Google Scholar
  564. Tagawa H (1976) Process for the production of uranium trifluoride. US 3976750, veröffentlicht 24. August 1976Google Scholar
  565. Takano M et al (1999) Synthesis of americium mononitride by carbothermic reduction method. In: Proceedings of the international conference on future nuclear systems, Jackson HoleGoogle Scholar
  566. Takano M et al (2008) Lattice thermal expansions of NpN, PuN, and AmN. J Nucl Mater 376:114–118CrossRefGoogle Scholar
  567. Takano M et al (2014) Thermal expansion and self-irradiation damage in curium nitride lattice. J Nucl Mat 448(1–3):66–71CrossRefGoogle Scholar
  568. Takeuchi K et al (1997) Structure and bond nature of the UF5 monomer. Inorg Chem 36(9):1934–1938.  https://doi.org/10.1021/ic961237s CrossRefPubMedPubMedCentralGoogle Scholar
  569. Tannenbaum IR, Florin AE (1953) An improved apparatus for the preparation of plutonium hexafluoride, report LA-1580. Los Alamos Scientific Laboratory, Los AlamosGoogle Scholar
  570. Taylor JC, Waugh AB (1980) Neutron diffraction study of β-uranium pentafluoride between 77 and 403 K. J Solid State Chem 35(2):137–147.  https://doi.org/10.1016/0022-4596(80)90485-5 CrossRefGoogle Scholar
  571. Taylor JC, Wilson PW (1973) A Neutron-diffraction study of anhydrous uranium tetrachloride. Acta Crystallogr B 29:1942–1944.  https://doi.org/10.1107/S0567740873005790 CrossRefGoogle Scholar
  572. Taylor JC, Wilson PW (1975) The structures of fluorides X. Neutron powder diffraction profile studies of UF6 at 193°K and 293°K. J Solid State Chem 14(4):378–382.  https://doi.org/10.1016/0022-4596(75)90059-6 CrossRefGoogle Scholar
  573. Taylor JC et al (1973) The structures of fluorides. I. Deviations from ideal symmetry in the structure of crystalline UF6: a neutron diffraction analysis. Acta Crystallogr B 29:7–12.  https://doi.org/10.1107/S0567740873001895 CrossRefGoogle Scholar
  574. Templeton DH, Dauben CH (1953) Crystal structures of americium compounds. J Am Chem Soc 75(18):4560–4562.  https://doi.org/10.1021/ja01114a051 CrossRefGoogle Scholar
  575. Templeton DH et al (1964) The crystal structure of thorium tetraiodide. Inorg Chem 3:639–644.  https://doi.org/10.1021/ic50015a007 CrossRefGoogle Scholar
  576. The Nuclear Metals XXXX. http://www.thenuclearmetals.com
  577. Thévenin T et al (1982) Crystallographic and magnetic studies of a new neptunium selenide: Np2Se5. J Less Comm Met 84:133–137CrossRefGoogle Scholar
  578. Thévenin T et al (1985) Crystal chemistry and 237Np mossbauer investigations on neptunium oxide chalcogenides NpOS and NpOSe. Mater Res Bull 20:723–730.  https://doi.org/10.1016/0025-5408(85)90151-5 CrossRefGoogle Scholar
  579. Thompson SG (1956) New isotopes of einsteinium. Phys Rev 104(5):1315–1319CrossRefGoogle Scholar
  580. Thompson SG, Cunningham BB (1958) First Macroscopic observations of the chemical properties of berkelium and californium, supplement to paper P/825. In: Second international conference of peaceful uses atomic energy, GenfGoogle Scholar
  581. Thompson SG et al (1950a) Element 97. Phys Rev 77(6):838–839.  https://doi.org/10.1103/PhysRev.77.838.2 CrossRefGoogle Scholar
  582. Thompson SG et al (1950b) Element 98. Phys Rev 78(3):298.  https://doi.org/10.1103/PhysRev.78.298.2 CrossRefGoogle Scholar
  583. Thompson SG et al (1950c) The new element californium (atomic number 98). Phys Rev 80(5):790.  https://doi.org/10.1103/PhysRev.80.790 CrossRefGoogle Scholar
  584. Thompson SG et al (1950d) Chemical properties of berkelium. J Am Chem Soc 72(6):2798–2801.  https://doi.org/10.1021/ja01162a538 CrossRefGoogle Scholar
  585. Thompson SG et al (1954a) Transcurium isotopes produced in the neutron irradiation of plutonium. Phys Rev 93(4):908.  https://doi.org/10.1103/PhysRev.93.908 CrossRefGoogle Scholar
  586. Thompson SG et al (1954b) Chemical properties of elements 99 and 100. J Am Chem Soc 76(24):6229–6236.  https://doi.org/10.1021/ja01653a004 CrossRefGoogle Scholar
  587. Thompson SG et al (1956) A new eluant for the separation of the actinide elements. J Inorg Nucl Chem 2(1):66–68CrossRefGoogle Scholar
  588. Thorpe JF, Kon GAR (1925) Cyclopentanone. Organic Synth 5:37.  https://doi.org/10.15227/orgsyn.005.0037 CrossRefGoogle Scholar
  589. Tilk W, Klemm W (1939) Magnetochemische Untersuchungen. XXXI. Über den Paramagnetismus von Verbindungen des sechswertigen Chroms, Molybdäns, Wolframs und Urans. Z Anorg Chem 240:355–368.  https://doi.org/10.1002/zaac.19392400408 CrossRefGoogle Scholar
  590. Tollerud DJ et al (2010) Mortality patterns among paducah gaseous diffusion plant workers. J Occup Environ Med 52(7):725–732PubMedPubMedCentralCrossRefGoogle Scholar
  591. Tollerud DJ et al (2011) Increased suicide risk among workers following toxic metal exposure at the Paducah gaseous diffusion plant from 1952 to 2003: a cohort study. Int J Occup Environ Med 2(4):199–214PubMedPubMedCentralGoogle Scholar
  592. Toumanov IN (2007) Plasma and high frequency processes for obtaining and processing materials in the nuclear fuel cycle, 2. Aufl. Nova Science Publishers, Hauppauge. ISBN 978-1-60021-613-8Google Scholar
  593. Toyoshima A et al (2009) Oxidation of element 102, nobelium, with flow electrolytic column chromatography on an atom-at-a-time scale. J Am Chem Soc 131(26):9180–9181.  https://doi.org/10.1021/ja9030038 CrossRefPubMedPubMedCentralGoogle Scholar
  594. Toyoshima A et al (2013) Measurement of the Md3+/Md2+ reduction potential studied with flow electrolytic chromatography. Inorg Chem 52(21):12311–12313.  https://doi.org/10.1021/ic401571h CrossRefPubMedPubMedCentralGoogle Scholar
  595. Trevorrow LE et al (1961) The thermal decomposition of plutonium hexafluoride. J Phys Chem 65(3):398–403.  https://doi.org/10.1021/j100821a003 CrossRefGoogle Scholar
  596. Trevorrow LE et al (1968a) Laboratory investigations in support of fluid-bed fluoride volatility processes, Part XVII, The fluorination of neptunium(IV) fluoride and neptunium(IV) oxide, Report ANL-7385. Argonne National Laboratory.  https://doi.org/10.2172/4492135
  597. Trevorrow LE et al (1968b) The Fluorination of neptunium(IV) fluoride and neptunium(IV) oxide. J Inorg Nucl Chem 30(10):2671–2677.  https://doi.org/10.1016/0022-1902(68)80394-X CrossRefGoogle Scholar
  598. Uhlíř J, Marečeka M (2009) Fluoride volatility method for reprocessing of LWR and FR fuels. J Fluor Chem 130(1):89–93.  https://doi.org/10.1016/j.jfluchem.2008.07.002 CrossRefGoogle Scholar
  599. Van Arkel AE, De Boer JH (1925) Darstellung von reinem Titanium-, Zirkonium-, Hafnium- und Thoriummetall. Z Anorg Allg Chem 148(1):345–350.  https://doi.org/10.1002/zaac.19251480133 CrossRefGoogle Scholar
  600. Volkmer AM (1996) Basiswissen Kernenergie. Hamburgische Elektricitäts-Werke AG, Hamburg, S 76. ISBN 3-925986-09-XGoogle Scholar
  601. Wade WZ, Wolf T (1967) Preparation and some properties of americium metal. J Inorg Nucl Chem 29(10):2577–2587CrossRefGoogle Scholar
  602. Wahl AC et al (1946a) Radioactive element 94 from deuterons on uranium. Phys Rev 69(7-8):366–367.  https://doi.org/10.1103/PhysRev.69.367 CrossRefGoogle Scholar
  603. Wahl AC et al (1946b) Properties of element 94. Phys Rev 70(7–8):555–556.  https://doi.org/10.1103/PhysRev.70.555 CrossRefGoogle Scholar
  604. Wallmann JC (1964) A structural transformation of curium sesquioxide. J Inorg Nucl Chem 26(12):2053–2057.  https://doi.org/10.1016/0022-1902(64)80149-4 CrossRefGoogle Scholar
  605. Wallmann JC et al (1951) The preparation and some properties of curium metal. J Am Chem Soc 73(1):493–494.  https://doi.org/10.1021/ja01145a537 CrossRefGoogle Scholar
  606. Wallmann JC et al (1967) Crystal structure and lattice parameters of curium trichloride. J Inorg Nucl Chem 29(11):2745–2751.  https://doi.org/10.1016/0022-1902(67)80013-7 CrossRefGoogle Scholar
  607. Walters RT, Briesmeister RA (1984) Absorption spectrum of plutonium hexafluoride in the 3000–9000 Å spectral region. Spectrochim Acta, Part A: Molec Spectr 40(7):587–589.  https://doi.org/10.1016/0584-8539(84)80108-7 CrossRefGoogle Scholar
  608. Warren IH, Price CE (1964) Thermoelectric properties of thorium arsenide. Adv Energy Conv 4(3):169–178CrossRefGoogle Scholar
  609. Weck PF (2012) Structures of uranyl peroxide hydrates: a first-principles study of studtite and metastudtite. Dalton Trans 41:9748–9752.  https://doi.org/10.1039/c2dt31242e CrossRefPubMedPubMedCentralGoogle Scholar
  610. Weigel F, Kohl R (1985) Preparation and properties of some new curium compounds. In: Edelstein NM (Hrsg) Americium and curium chemistry and technology. D. Reidel Publishing Co, Dordrecht, S 159–191CrossRefGoogle Scholar
  611. Weigel F, Marquart R (1983) Preparation and properties of some curium silicides. J Less Comm Met 90(2):283–290CrossRefGoogle Scholar
  612. Weigel F, Schuster W (1985) The vapor pressure of americium(III) chloride: an ultramicro apparatus for the determination of saturation vapor pressures of actinide halides. J Less Comm Met 113(1):157–176.  https://doi.org/10.1016/0022-5088(85)90157-2 CrossRefGoogle Scholar
  613. Weinstock B, Crist RH (1948) The vapor pressure of uranium hexafluoride. J Chem Phys 16:436–441.  https://doi.org/10.1063/1.1746915 CrossRefGoogle Scholar
  614. Weinstock B, Malm JG (1956) The properties of plutonium hexafluoride. J Inorg Nucl Chem 2(5–6):380–394.  https://doi.org/10.1016/0022-1902(56)80092-4 CrossRefGoogle Scholar
  615. Weinstock B et al (1959) Vapour-pressures of NpF6 and PuF6; thermodynamic calculations with UF6, NpF6 and PuF6. J Inorg Nucl Chem 11(2):104–114.  https://doi.org/10.1016/0022-1902(59)80054-3 CrossRefGoogle Scholar
  616. Weis J (2001) Ionenchromatographie und darin genannte Literatur, 3. Aufl. VCH Wiley, Weinheim, S 4–49CrossRefGoogle Scholar
  617. Weiss S et al (1972) The infrared spectrum of UF6. Spectrochim Acta Part A: Mol Biomol Spectr 28(11):2025–2028.  https://doi.org/10.1016/0584-8539(72)80176-4 CrossRefGoogle Scholar
  618. Weller MT et al (1988) The structure of δ-UO3. Polyhedr 7(3):243–244.  https://doi.org/10.1016/S0277-5387(00)80559-8 CrossRefGoogle Scholar
  619. Werner LB, Perlman I (1951) The pentavalent state of americium. J Am Chem Soc 73(1):495–496CrossRefGoogle Scholar
  620. Westrum EF Jr, Eyring LR (1951) The preparation and some properties of americium metal. J Am Chem Soc 73(7):3396–3398.  https://doi.org/10.1021/ja01151a116 CrossRefGoogle Scholar
  621. Wickleder MS et al (2006) Thorium. In: Fuger J (Hrsg) The chemistry of the actinide and transactinide elements. Springer, Dordrecht, S 52–160. ISBN 1-4020-3555-1.  https://doi.org/10.1007/1-4020-3598-5-3 CrossRefGoogle Scholar
  622. Wild JF et al (1975) Preparation of californium diiodide. In: Symposium commemorating the 25th anniversary of the discovery of elements 97 and 98, Berkeley. Zugegriffen am 20.01.1975Google Scholar
  623. Wild JF et al (1978) Studies of californium (II) and (III) Iodides. J Inorg Nucl Chem 40(5):811–817.  https://doi.org/10.1016/0022-1902(78)80157-2 CrossRefGoogle Scholar
  624. Willey RR (2002) Practical design and production of optical thin films. CRC Press, Boca Raton, S 276CrossRefGoogle Scholar
  625. Willis C (2015) Special nuclear material, uranium chemistry, blog. https://carlwillis.worldpress.com/2008/02/20/uranium-chemistry/. Zugegriffen am 08.01.2015
  626. Winchester RS (1957) Aqueous decontamination of plutonium from fission product elements. Lawrence Livermore National Laboratory, Berkeley, S 9–10Google Scholar
  627. Witten VH et al (1951) Studies of thorium X applied to human skin. J Invest Dermatol 17:311–322.  https://doi.org/10.1038/jid.1951.100 CrossRefPubMedPubMedCentralGoogle Scholar
  628. World Nuclear Association (2013) Thorium test begins, World Nuclear News, 21.06.2013, London. http://www.world-nuclear.org
  629. World Nuclear Association (2014) Smoke detectors and americium, London, zuletzt aktualisiert (Juli 2014). http://www.world-nuclear.org/info/Non-Power-Nuclear-Applications/Radioisotopes/Smoke-Detectors-and-Americium/
  630. Xu W-H, Pyykkö P (2016) Is the chemistry of lawrencium peculiar. Chem Phys 18:17351–17355.  https://doi.org/10.1039/c6cp02706g CrossRefGoogle Scholar
  631. Yamashita T et al (1997) Thermal expansions of NpO2 and some other actinide dioxides. J Nucl Mat 245(1):72–78.  https://doi.org/10.1016/S0022-3115(96)00750-7 CrossRefGoogle Scholar
  632. Yoshida Z et al (2006) Neptunium. In: Fuger J et al (Hrsg) The chemistry of the actinide and transactinide elements. Springer, Dordrecht, S 699–812. ISBN 1-4020-3555-1.  https://doi.org/10.1007/1-4020-3598-5_6 CrossRefGoogle Scholar
  633. Young JP et al (1975) High temperature spectroscopic and X-ray diffraction studies of californium tribromide: proof of thermal reduction to californium (II). J Inorg Nucl Chem 37(12):2497–2501.  https://doi.org/10.1016/0022-1902(75)80878-5 CrossRefGoogle Scholar
  634. Young JP et al (1978) Spectrophotometric studies of transcurium element halides and oxyhalides in the solid state. J Radioanal Chem 43(2):479–488.  https://doi.org/10.1007/BF02519508 CrossRefGoogle Scholar
  635. Young JP et al (1979) Crystal structures of α-UF5 and U2F9 and spectral characterization of U2F9. Inorg Chim Acta 37(2):29–133.  https://doi.org/10.1016/S0020-1693(00)95530-0 CrossRefGoogle Scholar
  636. Young JP et al (1980) Chemical consequences of radioactive decay. 1. Study of 249Cf ingrowth into crystalline 249BkBr3: a new crystalline phase of CfBr3. Inorg Chem 19(8):2209–2212.  https://doi.org/10.1021/ic50210a003 CrossRefGoogle Scholar
  637. Young JP et al (1981) Chemical consequences of radioactive decay. 2. Spectrophotometric study of the ingrowth of berkelium-249 and californium-249 into halides of einsteinium-253. Inorg Chem 20(11):3979–3983.  https://doi.org/10.1021/ic50225a076 CrossRefGoogle Scholar
  638. Zachariasen WH (1948) Crystal chemical studies of the 5f-series of elements. I. New structure types. Acta Crystallogr 1:265–268.  https://doi.org/10.1107/S0365110X48000703 CrossRefGoogle Scholar
  639. Zachariasen WH (1949) Crystal chemical studies of the 5f-series of elements. XII. New compounds representing known structure types. Acta Crystallogr 2(6):388.  https://doi.org/10.1107/S0365110X49001016 CrossRefGoogle Scholar
  640. Zachariasen WH (1975) On californium metal. J Inorg Nucl Chem 37(6):1441–1442CrossRefGoogle Scholar
  641. Zerr A et al (2003) Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure. Nat Mater 2(3):185–189PubMedCrossRefPubMedCentralGoogle Scholar
  642. Zimen K-E (1987) Strahlende Materie. Radioaktivität – ein Stück Zeitgeschichte. Bechtle-Verlag, Esslingen/MünchenGoogle Scholar
  643. Zou Y et al (2002) Resonance transition energies and oscillator strengths in lutetium and lawrencium. Phys Rev Lett 88(2):183001.  https://doi.org/10.1103/PhysRevLett.88.023001 CrossRefPubMedPubMedCentralGoogle Scholar
  644. Zuckerman JJ (2009) Inorganic reactions and methods, formation of ceramics. Wiley, New York, S. 349. ISBN 0-470-14554-4Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.LANXESS Deutschland GmbHLeverkusenDeutschland

Personalised recommendations