Advertisement

Demenzerkrankungen – Prävalenz, Bedeutung und Implikationen für die Prävention und Gesundheitsförderung

  • Hans FörstlEmail author
  • Sophia Förstl
Living reference work entry
  • 32 Downloads
Part of the Springer Reference Pflege – Therapie – Gesundheit book series (SRPTG)

Zusammenfassung

Epidemiologischer Hauptrisikofaktor eines Demenzsyndroms ist das Alter. Die Ursachen der Demenzen sind sehr heterogen und reichen von vermeidbaren zu behandelbaren Erkrankungen bis zu neurodegenerativen Demenzformen, deren Manifestation durch eine Reihe behandelbarer Faktoren zu beeinflussen ist. Die wichtigste Demenzursache in der westlichen Welt ist die sog. Alzheimer-Krankheit mit charakteristischen Eiweißablagerungen im Gehirn (Plaques und Neurofibrillen). Die mit Abstand häufigste Demenzform ist die gemischte Demenz mit einer Kombination von Alzheimer- und vaskulären Hirnveränderungen. Für Prävention und Gesundheitsförderung kommt den folgenden bekannten Risikofaktoren in der Europäischen Union eine hohe Bedeutung zu: Depression, Bewegungsmangel, Adipositas, Hypertonus, Diabetes mellitus und Nikotinismus. Daneben gibt es eine Reihe von Faktoren, deren Bedeutung erst in den letzten Jahren untersucht wurde, z. B. Lebensereignisse, Beruf, Umweltverschmutzung, Wahrnehmungsstörungen, Einsamkeit, Zahnhygiene, Schlaf u. v. a. Häufig übersehen werden potenzielle Demenzursachen, die im Vorfeld zu behandeln oder ganz zu vermeiden sind wie Infektionen und Schädel-Hirn-Verletzungen.

Literatur

  1. Abell JG et al (2018) Association between systolic blood pressure and dementia in the Whitehall II cohort study: role of age, duration, and threshold used to define hypertension. Eur Heart J 39:3119–3125PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abner EL et al (2019) Tobacco smoking and dementia in a Kentucky Cohort: a competing risk factor analysis. J Alzheimers Dis 68:625–633PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adams ML et al (2017) Dose-response gradients and composite measure of six risk factors and cognitive decline and cardiovascular disease. Prev Med 91:329–334CrossRefGoogle Scholar
  4. Adams S et al (2018) Vascular risk burden and new-onset depression in the community. Prev MedGoogle Scholar
  5. Aiello Bowles EJ et al (2016) Anesthesia exposure and risk of dementia and Alzheimer’s disease: a prospective study. JAGS 64:602–607CrossRefGoogle Scholar
  6. Aiello Bowles EJ et al (2017) Risk of Alzheimer’s disease or dementia following a cancer diagnosis. PLoS OneGoogle Scholar
  7. Akbaraly TN et al (2019) Association of midlife diet with subsequent risk for dementia. JAMA 321:957–968PubMedPubMedCentralCrossRefGoogle Scholar
  8. Albala C et al (2016) Low leptin availability as a risk factor for dementia in Chilean older people. Dement Geriatr Cogn Disord Extra 6:295–302CrossRefGoogle Scholar
  9. Albanese E et al (2015) Overweight and obesity in midlife and brain structure and dementia 26 years later: the AGES-Reykjavik Study. Am J EpidemiolGoogle Scholar
  10. Albanese E et al (2017) Body mass index in midlife and dementia: systemic review and meta-regression analysis of 589.649 men and women followed in longitudinal studies. Alzheimers DementGoogle Scholar
  11. Allen AP et al (2017) A systematic review of the psychobiological burden of informal caregiving for patients with dementia: focus on cognitive and biological markers of chronic stress. Neurosci Biobehav Rev 73:123–164PubMedCrossRefGoogle Scholar
  12. Aloni R et al (2019) Premature aging among trauma survivors – the longitudinal implications of sleep disruptions on telomere length and cognitive performance. J Gerontol B Psychol Sci Soc SciGoogle Scholar
  13. Andrade C (2019) Anticholinergic drug exposure and the risk of dementia: there is modest evidence for an association but not for causality. J Clin Psychiatry 80Google Scholar
  14. Andrieu S (2017) Effect of long-term omega-3-polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT) a randomised, placebo-controlled trial. Lancet Neurol 16:377–389PubMedCrossRefGoogle Scholar
  15. Anstey KJ et al (2017) Updating the evidence on the association between serum cholesterol and risk of late-life dementia: review and meta-analysis. J Alzheimers Dis 56:215–228PubMedPubMedCentralCrossRefGoogle Scholar
  16. Areosa Sastre A et al (2017) Effect of the treatment of type 2 diabetes mellitus on the development of cognitive impairment and dementia. Cochrane Database Syst RevGoogle Scholar
  17. Ashby-Mitchel K et al (2017) Proportion of dementia in Australia explained by common modifiable risk factors. Alz Res TherGoogle Scholar
  18. Atti AR et al (2019) Metabolic syndrome, mild cognitive impairment, and dementia: a meta-analysis of longitudinal studies. Am J Psychiatry 27:625–637Google Scholar
  19. Aubert CE et al (2017) The association between subclinical thyroid dysfunction and dementia: the Health, Aging and Body Composition (Health ABC) study. Clin Endocrinol 87:617–626CrossRefGoogle Scholar
  20. Bagheri N et al (2018) General practice clinical data help identify dementia hotspots: a novel geospatial analysis approach. J Alzheimers DisGoogle Scholar
  21. Balouch S et al (2019) Social networks and loneliness in people with Alzheimer’s dementia. Int J Geriatr Psychiatry 34:666–673PubMedCrossRefGoogle Scholar
  22. Barnier AJ et al (2019) The impact of self-reported hearing difficulties on memory collaboration in older adults. Front Neurosci 13:870.  https://doi.org/10.3389/fnins.2019.00870CrossRefPubMedPubMedCentralGoogle Scholar
  23. Batmyagmar D et al (2019) High intensity endurance training is associated with better quality of life, but not with improved cognitive functions in elderly marathon runners. Sci Rep.  https://doi.org/10.1038/s41598-019-41010-w
  24. Batty GD et al (2018) Biomarker assessment of tobacco smoking exposure and risk of dementia death: pooling of individual participant data from 14 cohort studies. J Epidemiol Community Health 72:513–515PubMedCrossRefGoogle Scholar
  25. Becker E et al (2018) Anxiety as a risk factor of Alzheimer’s disease and vascular dementia. Br J Psychiatry 213:654–660PubMedCrossRefGoogle Scholar
  26. Beeri MS et al (2005) Relationship between body height and dementia. Am J Geriatr Psychiatry 13:116–123PubMedPubMedCentralCrossRefGoogle Scholar
  27. Behrman S et al (2014) Considering the senses in the diagnosis and management of dementia. Maturitas 77:305–310PubMedCrossRefGoogle Scholar
  28. Béjot Y et al (2018) A review of epidemiological research on stroke and dementia and exposure to air pollution. Int J Stroke 13:687–695PubMedCrossRefGoogle Scholar
  29. Belviranli M et al (2016) The relationship between brain-derived neurotrophic factor, irisin and cognitive skills of endurance athletes. Phys Sportsmed 44:290–296PubMedCrossRefGoogle Scholar
  30. Belviranli M et al (2018) Exercise training protects against aging-induced cognitive dysfunction via activation of the hippocampal PGC-1α/FNDC5/BDNF pathway. NeuroMolecular Med 20:386–400PubMedCrossRefGoogle Scholar
  31. Bickel H et al (2012) Reduction of long-term care dependence after an 8-year primary care prevention program for stroke and dementia: the INVADE trial. J Am Heart Assoc 1Google Scholar
  32. Biddle KD et al (2019) Social engagement and amyloid-ß-related cognitive decline in cognitively normal older adults. Am J Geriatr Psychiatry.  https://doi.org/10.1016/j.jagp.2019.05.005PubMedCrossRefGoogle Scholar
  33. Biessels GJ et al (2018) Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol 14:591–604PubMedPubMedCentralCrossRefGoogle Scholar
  34. Brauer R et al (2019) Trazodone use and risk of dementia: a population-based cohort study. PLoS Med 16PubMedPubMedCentralCrossRefGoogle Scholar
  35. Brenowitz WD et al (2019) Multiple sensory impairment is associated with increased risk of dementia among black and white older adults. J Gerontol A Biol Sci Med Sci 74:890–896PubMedCrossRefGoogle Scholar
  36. Brodrick JE et al (2016) Antidepressant exposure and risk of dementia in older adults with major depressive disorder. J Am Geriatr Soc 64:2517–2521PubMedCrossRefGoogle Scholar
  37. Bruijn RF de et al. (2014) Anxiety is not associated with the risk of dementia or cognitive decline: the Rotterdam study. Am J Geriatr Psychiatr 22:1382–1390Google Scholar
  38. Bunch TJ et al (2019) Stroke and dementia risk in patients with and without atrial fibrillation and carotid arterial disease. Heart RhythmGoogle Scholar
  39. Buratti L et al (2016) Obstructive sleep apnea syndrome: an emerging risk factor for dementia. CNS Neurol Disord Drug Targets 15(6):678–682PubMedCrossRefGoogle Scholar
  40. Burri A et al (2013) Childhood trauma and PTSD symptoms increase the risk of cognitive impairment in a sample of former indentured child laborers in old age. PLoS OneGoogle Scholar
  41. Callahan BL et al (2017) Adult ADHD: risk factor for dementia or phenotypic mimic? Front Aging Neurosci 9Google Scholar
  42. Callisaya M et al (2017) Effects of exercise on type 2 diabetes mellitus-related cognitive impairment and dementia. J Alzheimers Dis 59:503–513PubMedCrossRefGoogle Scholar
  43. Campbell JM et al (2018) Metformin use associated with reduced risk of dementia in patients with diabetes: a systematic review and meta-analysis. J Alzheimers Dis 65:1225–1236PubMedPubMedCentralCrossRefGoogle Scholar
  44. Cao C et al (2012) High blood caffeine levels in MCI linked to lack of progression to dementia. J Alzheimers Dis 30:559–572PubMedPubMedCentralCrossRefGoogle Scholar
  45. Caracciolo B et al (2014) Cognitive decline, dietary factors and gut-brain interactions. Mech Ageing Dev 136–137:59–69PubMedCrossRefGoogle Scholar
  46. Carter CJ et al (2017) The Porphyromonas gingivalis/host interactome shows enrichment in GWASdb genes related to Alzheimer’s disease, diabetes and cardiovascular diseases. Front Aging Neurosci 9:408PubMedPubMedCentralCrossRefGoogle Scholar
  47. Chaker L et al (2016) Thyroid function and the risk of dementia: the Rotterdam study. Neurology 87:1688–1695PubMedCrossRefGoogle Scholar
  48. Chan P-C et al (2017) Reduced vascular risk factors in Parkinson’s disease dementia and dementia with Lewy-bodies compared to Alzheimer’s disease. Brain BehavGoogle Scholar
  49. Chen R et al (2013) Association between environmental tobacco smoke exposure and dementia syndromes. Occup Environ Med 70:63–69PubMedCrossRefGoogle Scholar
  50. Chen H et al (2017) Exposure to ambient air pollution and the incidence of dementia: a population-based cohort study. Environ Int 108:271–277PubMedCrossRefGoogle Scholar
  51. Chen J et al (2018) Tooth loss is associated with increased risk of dementia and with a dose-response relationship. Front Aging Neurosci 10:415PubMedPubMedCentralCrossRefGoogle Scholar
  52. Cherbuin N et al (2019) Chronic obstructive pulmonary disease and risk of dementia and mortality in lower to middle income countries. J Alzheimers Dis 70:s63–s73PubMedPubMedCentralCrossRefGoogle Scholar
  53. Chin-Hsiao T (2019) Metformin and risk of dementia in type 2 diabetes patients. Aging Dis 10:37–48PubMedPubMedCentralCrossRefGoogle Scholar
  54. Choi D et al (2018) Effect of smoking cessation on the risk of dementia: a longitudinal study. Ann Clin Transl Neurol 5:1192–1199PubMedPubMedCentralCrossRefGoogle Scholar
  55. Chung HS et al (2019) Variability in total cholesterol concentration is associated with the risk of dementia: a nationwide population-based cohort study. Front Neurol 10Google Scholar
  56. Clouston SAP et al (2019) Education and cognitive decline: an integrative analysis of global longitudinal studies of cognitive aging. J Gerontol B Psychol Sci Soc SciGoogle Scholar
  57. Cohen-Mansfield J et al (2016) Correlates and predictors of loneliness in ilder adults: a review of quantitative results informed by qualitative insights. Int Psychogeriatr 28:557–576PubMedCrossRefGoogle Scholar
  58. Contador I et al (2015) Childhood and adulthood rural residence increase the risk of dementia: NEDICES study. Curr Alzheimer Res 12(4):350–357PubMedCrossRefGoogle Scholar
  59. Cook JM et al (2018) Trauma and aging. Curr Psychiatry Rep 20Google Scholar
  60. Creavin ST et al (2012) Metabolic syndrome, diabetes, poor cognition, and dementia in the Caerphilly prospective study. J Alzheimers Dis 28:931–939PubMedCrossRefGoogle Scholar
  61. Croteau E, Castellano CA, Fortier M et al (2018) A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease. Exp Gerontol 107:18–26PubMedCrossRefGoogle Scholar
  62. Crous-Bou M et al (2014) Mediterranean diet and telomere length in Nurses’ Health Study: population based cohort study. BMJGoogle Scholar
  63. Culabras A et al (2018) Sleep apnea is a risk factor for stroke and vascular dementia. Curr Neurol Neurosci Rep 18:53CrossRefGoogle Scholar
  64. Dall PM et al (2017) The influence of dog ownership on objective measures of free-living physical activity and sedentary behavior in community-dwelling older adults: a longitudinal case-controlled study. BMC Public Health 17Google Scholar
  65. Daly B et al (2018) Evidence summary: the relationship between oral health and dementia. Br Dent J 223:846–853PubMedCrossRefGoogle Scholar
  66. Damirchi A et al (2018) Mental training enhances cognitive function and BDNF more than either physical or combined training in elderly women with MCI: a small scale study. Am J Alzheimers Dis Other Dement 33:20–29CrossRefGoogle Scholar
  67. Dartigues JF et al (2013) Playing board games, cognitive decline and dementia: a French population-based cohort study. BMJ OpenGoogle Scholar
  68. Darweesh SK et al (2017) Simple test of manual dexterity can help to identify persons at high risk for neurodegenerative disease in the community. J Gerontol A Biol Sci Med Sci 72:75–81PubMedCrossRefGoogle Scholar
  69. Davies G et al (2018) Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat Commun 9:2098.  https://doi.org/10.1038/s41467-018-04362-xCrossRefPubMedPubMedCentralGoogle Scholar
  70. Davies-Kershaw HR et al (2018) Visions impairment and risk of dementia: findings from the English longitudinal study of ageing. J Am Geriatr Soc 66:1823–1829PubMedCrossRefGoogle Scholar
  71. Daykin N et al (2018) What works for wellbeing? A systematic review of wellbeing outcomes for music and singing in adults. Perspect Public Health 138:39–46PubMedCrossRefGoogle Scholar
  72. De Cicco V et al (2016) Oral implant-prostheses: new teeth for a brighter brain. PLoS One 11Google Scholar
  73. De Jong FJ et al (2009) Thyroid function, the risk of dementia and neuropathologic changes: the Honolulu-Asia aging study. Neurobiol Aging 30:600–606PubMedCrossRefGoogle Scholar
  74. Deal JA et al (2017) Hearing impairment and incident dementia and cognitive decline in older adults: the health ABC study. J Gerontol A Biol Sci Med Sci 72:703–709PubMedGoogle Scholar
  75. Deal JA et al (2018) Hearing treatment for reducing cognitive decline: design and methods of the ageing and cognitive health evaluation in elders randomized controlled trial. Alzheimers Dement 4:499–507Google Scholar
  76. Deal JA et al (2019) Retinalk signs and risk of incident dementia in the Atherosclerosis Risk in Communities study. Alzheimers Dement 15:477–486PubMedCrossRefGoogle Scholar
  77. Deckers K et al (2015) Target risk factors for dementia prevention: a systematic review and Delphi consensus study on the evidence from observational studies. Int J Geriatr Psychiatry 30:234–246PubMedCrossRefGoogle Scholar
  78. Deng J et al (2018) Prevalence and effect factors of dementia among the community elderly in Chongqing, China. Psychogeriatrics 18:412–420PubMedCrossRefGoogle Scholar
  79. Deuschle M et al (2017) Hypothalamic-pituitary-adrenocortical dysfunction in elderly, male marathon runners: feedback sensitivity, stress response, and effects on verbal memory. Neuroendocrinology 105:150–156PubMedCrossRefGoogle Scholar
  80. DGPPN, DGN (2016) S3-Leitlinie DemenzenGoogle Scholar
  81. Dimakakou E et al (2018) Exposure to environmental and occupational particulate air pollution as a potential contributor to neurodegeneration and diabetes: a systematic review of epidemiological research. Int J Environ Res Public Health 15(8):pii: E1704.  https://doi.org/10.3390/ijerph15081704CrossRefGoogle Scholar
  82. Doi T et al (2017) Effects of cognitive leisure activity on cognition in mild cognitive impairment: results of a randomized controlled trial. J Am Med Assoc 18:686–691CrossRefGoogle Scholar
  83. Dominguez JC et al (2018) Improving cognition through dance in older Filipinos with mild cognitive impairment. Curr Alzheimer Res 15:1136–1141PubMedCrossRefGoogle Scholar
  84. Dominy SS et al (2019) Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv 5:eaau333CrossRefGoogle Scholar
  85. Dondu A et al (2015) Is obsessive-compulsive symptomatology a risk factor for Alzheimer-type dementia? Psychiatry Res 28:381–386CrossRefGoogle Scholar
  86. Donley GAR et al (2018) Association of childhood stress with late-life dementia ad Alzheimer’s disease: the KIHD study. Eur J Pub Health 28:1069–1073CrossRefGoogle Scholar
  87. Donovan NJ et al (2017) Loneliness, depression and cognitive function in older U.S. adults. Int J Geriatr Psychiatry 32:564–573PubMedCrossRefGoogle Scholar
  88. Douka S et al (2019) Greek traditional dances: a way to support intellectual, psychological, and motor functions in senior citizens at risk of neurodegeneration. Front Aging Neurosci 11:6PubMedPubMedCentralCrossRefGoogle Scholar
  89. Doulberis M et al (2019) Microbes and Alzheimer’ disease: lessons from H. pylori and GUT microbiota. Eur Rev Med Pharmacol Sci 23:1845–1846PubMedGoogle Scholar
  90. Driscoll I et al (2016) Relationships between caffeine intake and risk for probable dementia or global cognitive impairment: the Women’s Health Initiative Memory Study. J Gerontol A Biol Med Sci 71:1596–1602CrossRefGoogle Scholar
  91. Duffy SL et al (2016) Association of anterior cingulate glutathione with sleep apneas in older adults at-risk for dementia. Sleep 39:899–906PubMedPubMedCentralCrossRefGoogle Scholar
  92. Dufouil C et al (2014) Older age at retirement is associated with decreased risk of dementia. Eur J Epidemiol 29:353–361PubMedCrossRefGoogle Scholar
  93. Ekström I et al (2017) Smell loss predicts mortality risk regardless of dementia conversion. JAGS 65:1238–1243CrossRefGoogle Scholar
  94. Ekström I et al (2019) Subjective olfactory loss in older adults concurs with long-term odor identification decline. Chem Senses 44:105–112PubMedCrossRefGoogle Scholar
  95. Elovainio M et al (2017) Structural social relations and cognitive ageing trajectories: evidence from the Whitehall II cohort study. Int J Epidemiol.  https://doi.org/10.1093/ije/dyx209PubMedCentralCrossRefPubMedGoogle Scholar
  96. Engel B et al (2018) Hyperuricemia and dementia – a case-control study. BMC Neurol 18Google Scholar
  97. Ergen M et al (2017) Evaluation of cognitive performance in professional divers by means of event-related potentials and neuropsychology. Clin Neurophysiol 128:579–588PubMedCrossRefGoogle Scholar
  98. Escher C et al (2019) Prävention von kognitivem Abbau und Demenz durch Behandlung von Risikofaktoren. NervenarztGoogle Scholar
  99. Eshkoor SA et al (2014) Association between dentures and the rate of falls in dementia. Med Devices 7:225–230Google Scholar
  100. Eskelinen MH et al (2009) Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis 16:85–91PubMedCrossRefGoogle Scholar
  101. Fan YC et al (2017) Impact of worsened metabolic syndrome on the risk of dementia: a nationwide cohort study. J Am Heart Assoc 6Google Scholar
  102. Fancourt D et al (2019) Television viewing and cognitive decline in older age: findings from the English Longitudinal Study of Ageing. Sci RepGoogle Scholar
  103. Fang WI et al (2018) Tooth loss as a risk factor for dementia: systematic review and meta-analysis of 21 observational studies. BMC Psychiatry 18:345PubMedPubMedCentralCrossRefGoogle Scholar
  104. Feng L et al (2016) Tea consumption reduces the incidence of neurocognitive disorders: findings from the Singapore Longitudinal Aging Study. J Nutr Health AgingGoogle Scholar
  105. Ferretti MT et al (2018) Sex differences in Alzheimer disease – the gateway to precision medicine. Nat Rev Neurol 14:457–469PubMedCrossRefGoogle Scholar
  106. Ferrucci L et al (2018) Inflammageing: chronic inflammation and ageing, cardiovascular disease, and frailty. Cardiovasc AgeingGoogle Scholar
  107. Fesharaki-Zadeh A (2019) Chronic traumatic encephalopathy: a brief overview. Front Neurol 10Google Scholar
  108. Feychting M et al (2003) Occupational magnetic field exposure and neurodegenerative disease. Epidemiology 14:413–419PubMedGoogle Scholar
  109. Fiorito G et al (2017) Social adversity and epigenetic aging: a multi-cohort study in socioeconomic differences in peripheral blood DNA methylation. Sci RepGoogle Scholar
  110. Ford AH et al (2018) Hearing loss and risk of dementia in later life. Maturitas 112:1–11PubMedCrossRefGoogle Scholar
  111. Forette F et al (1998) Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet 352:1347–1351PubMedCrossRefGoogle Scholar
  112. Förstl H (2017) Demenz – Diagnose und Therapie, 2. Aufl. Schattauer, StuttgartGoogle Scholar
  113. Förstl H et al (2015) Organisch bedingte psychische Störungen. GOVI, EschbornGoogle Scholar
  114. Friberg L et al (2019) Less dementia and stroke in low-risk patients with atrial fibrillation taking oral anticoagulation. Eur Heart J 40:2327–2335PubMedPubMedCentralCrossRefGoogle Scholar
  115. Fujiyoshi A et al (2017) Coronary artery calcium and risk of dementia in MESA (Multi-Ethnic Study of Atherosclerosis). Circ Cardiovasc Imaging 10Google Scholar
  116. Ganguli M (2015) Cancer and dementia: it’s complicated. Alzheimer Dis Assoc Disord 29:177–182PubMedPubMedCentralGoogle Scholar
  117. Garand L et al (2005) Caregiving burden and psychiatrc morbidity in spouses of persons with mild cognitive impairment. Int J Geriatr Psychiatry 20:512–522PubMedPubMedCentralCrossRefGoogle Scholar
  118. Garcia DO et al (2015) Relationship between dog ownership and physical activity in postmenopausal women. Prev Med 70PubMedCrossRefGoogle Scholar
  119. Garcia MA et al (2018) Age of migration and the incidence of cognitive impairment: a cohort study of elder Mexican-Americans. Innov AgingGoogle Scholar
  120. Gates NJ et al (2019) Computerised cognitive training for preventing dementia in people with mild cognitive impairment. Cochrane Database Syst RevGoogle Scholar
  121. Gatz M et al (2006) Potentially modifiable risk factors for dementia in identical twins. Alzheimers Dement 2:110–117PubMedCrossRefGoogle Scholar
  122. Gelber RP et al (2011) Coffee intake in midlife and risk of dementia and its neuropathologic correlates. J Alzheimers Dis 23:607–615PubMedPubMedCentralCrossRefGoogle Scholar
  123. Georgakis MK et al (2017) Albuminuria in association with cognitive function and dementia: a systematic review and meta-analysis. JAGS 65:1190–1198CrossRefGoogle Scholar
  124. Gerritsen L et al (2017) Influence of negative life events and widowhood on risk for dementia. Am J Geriatr Psychiatry 25:766–778PubMedPubMedCentralCrossRefGoogle Scholar
  125. Gharacholou SM et al (2011) Cognitive impairment and outcomes in older adult survivors of acute myocardial infarction: findings from the translational research investigating underlying disparities in acute myocardial infarction patients’ health status registry. Am Heart J 162:860–869PubMedPubMedCentralCrossRefGoogle Scholar
  126. Gildner TE et al (2019) Does poor sleep impair cognition during aging? Longitudinal associations between changes in sleep duration and cognitive performance among older Mexican adults. Arch Gerontol Geriatr 83:161–168PubMedCrossRefGoogle Scholar
  127. Gilsanz P et al (2018) Early midlife pulmonary function and dementia risk. Alzheimer Dis Assoc Disord 32:270–275PubMedPubMedCentralGoogle Scholar
  128. Gimson A et al (2018) Support for midlife anxiety diagnosis as an independent risk factor for dementia: a systematic review. BMJ Open 8(4):e019399.  https://doi.org/10.1136/bmjopen-2017-019399CrossRefPubMedPubMedCentralGoogle Scholar
  129. Gomm W et al (2016) Regular benzodiazepine and Z-substance use and risk of dementia: an analysis of German claims data. J Alzheimers Dis 54:801–808PubMedCrossRefGoogle Scholar
  130. Gonzalez HM et al (2018) Midlife cardiovascular health and 20-year cognitive decline: Atherosclerosis Risk in Communities Study results. Alzheimers Dement 14:579–589PubMedCrossRefGoogle Scholar
  131. Grasset L et al (2016) Trends in dementia incidence: evolution over a 10-year period in France. Alzheimers Dement 12:272–280PubMedCrossRefGoogle Scholar
  132. Grinberg LT et al (2016) Chronic traumatic encephalopathy presenting in Alzheimer’s dementia in a retired soccer player. J Alzheimers Dis 54:169–174PubMedPubMedCentralCrossRefGoogle Scholar
  133. Groeneveld O et al (2018) Brain imaging correlates of mild cognitive impairment and early dementia in patients with type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis 28:1253–1260PubMedCrossRefGoogle Scholar
  134. Grotz C et al (2016) Why is later age at retirement beneficial for cognition? Results from a French population-based study. J Nutr Health Aging 20:514–519PubMedCrossRefGoogle Scholar
  135. Guadagni V et al (2018) Effects of six-month aerobic exercise intervention on sleep in healthy older adults in the Brain in Motion study: a pilot study. J Alzheimers Dis Rep 2:229–238PubMedPubMedCentralCrossRefGoogle Scholar
  136. Gulpers B et al (2016) Anxiety as a predictor for cognitive decline and dementia: a systematic review and meta-analysis. Am J Geriatr Psychiatry 24:823–842PubMedCrossRefGoogle Scholar
  137. Hack EE et al (2019) Multilingualism and dementia risk: longitudinal analysis of the nun study. J Alzheimers Dis 71:201–212PubMedCrossRefGoogle Scholar
  138. Hagen K et al (2014) Headache as a risk factor for dementia: a prospective population-based study. Cephalgia 34:327–335CrossRefGoogle Scholar
  139. Hayden KM et al (2017) The association between an inflammatory diet and global cognitive function and incident dementia in older women: the Women’s Health Initiative Memory Study. Alzheimers Dement 13:1187–1196PubMedPubMedCentralCrossRefGoogle Scholar
  140. Heath L et al (2018) Cumulative antidepressant use and risk of dementia in a prospective cohort study. JAGS 66:1948–1955CrossRefGoogle Scholar
  141. Heffernan M et al (2016) Alcohol consumption and incident dementia: evidence from the Sydney memory and ageing study. J Alzheimers Dis 52:529–538PubMedCrossRefGoogle Scholar
  142. Helou R et al (2014) Occupational exposure to mineral turpentine and heavy fuels: a possible risk factor for Alzheimer’s disease. Dement Geriatr Cogn Disord Extra 4:160–171CrossRefGoogle Scholar
  143. Henderson FM et al (2019) ‚A new normal with chemobrain‘: experiences of the impact of chemotherapy-related cognitive deficits in long-term breast cancer survivors. Health Psychol Open.  https://doi.org/10.1177/2055102919832234CrossRefGoogle Scholar
  144. Hertz L et al (2015) Effects of ketone bodies in Alzheimer’s disease in relation to neural hypometabolism, ß-amyloid toxicity, and astrocyte function. J Neurochem 134:7–20PubMedCrossRefGoogle Scholar
  145. Hettich MA et al (2014) The anti-diabetic drug metformin reduces BACE1 protein level by interfering with the MID1 complex. PLoS One 9Google Scholar
  146. Heywood R et al (2017) Hearing loss and risk of mild cognitive impairment and dementia: findings from the Singapore longitudinal ageing study. Dement Geriatr Cogn Disord 43:259–268PubMedCrossRefGoogle Scholar
  147. Hicks AJ et al (2019) Traumatic brain injury as a risk factor for dementia and Alzheimer’s disease: critical review of study methodologies. J Neurotrauma.  https://doi.org/10.1089/neu.2018.6346PubMedCrossRefGoogle Scholar
  148. Hikichi H et al (2016) Increased risk of dementia in the aftermath of the 2011 Great East Japan Earthquake and Tsunami. Proc Natl Acad Sci.  https://doi.org/10.1073/pnas.1607793113CrossRefGoogle Scholar
  149. Hill TD et al (2012) Immigrant status and cognitive functioning in late life: an examination of gender variations in the healthy immigrant effect. Soc Sci Med 75:2076–2084PubMedPubMedCentralCrossRefGoogle Scholar
  150. Hjelm C et al (2014) Factors associated with increased risk for dementia in individuals age 80 years of older with congestive heart failure. J Cardiovasc Nurs 29:82–90PubMedCrossRefGoogle Scholar
  151. Holwerda TJ et al (2014) Feelings of loneliness, but not social isolation, predict dementia onset: results from the Amsterdam study of the elderly. J Neurol Neurosurg Psychiatry 85:135–142PubMedCrossRefGoogle Scholar
  152. Hong JY et al (2015) Gout and the risk of dementia: a nationwide population-based cohort study. Arthritis Res Ther 17Google Scholar
  153. Hooper C (2017) Cross-sectional associations of total plasma homocysteine with cortical ß-amyloid independently and as a function of omega 3 polyunsaturated fatty acid status in older adults at risk of dementia. J Nutr Health Aging 21:1075–1080PubMedCrossRefGoogle Scholar
  154. Hooshmand B et al (2019) Association of methionine to homocysteine status with brain magnetic resonance imaging measures and risk of dementia. JAMA PsychiatryGoogle Scholar
  155. Hörder H et al (2018) Midlife cardiovascular fitness and dementia: a 44-year longitudinal population study in women. Neurology 90:e1298–e1305PubMedPubMedCentralCrossRefGoogle Scholar
  156. Hsu CC et al (2016) Association of dementia and peptic ulcer disease: a nationwide population-based study. Am J Alzheimers Dis Other Dement 31:389–394CrossRefGoogle Scholar
  157. Huang TL et al (2008) Knee height and arm span: a reflection of early life environment and risk of dementia. Neurology 70PubMedCrossRefGoogle Scholar
  158. Hug K et al (2006) Magnetic field exposure and neurodegenerative diseases – recent epidemiological studies. Soz Praventivmed 51:210–220PubMedCrossRefGoogle Scholar
  159. Hughes TM et al (2018) Arterial stiffness and dementia pathology: Atherosclerosis Risk in Communities (ARIC)-PET study. Neurology 90PubMedPubMedCentralCrossRefGoogle Scholar
  160. Ilomaki J et al (2015) Alcohol consumption, dementia and cognitive decline: an overview of systematic reviews. Curr Clin Pharmacol 10:204–212PubMedCrossRefGoogle Scholar
  161. International Labor Organization (ILO). International Standard Classification of Occupations (ISCO-08)Google Scholar
  162. Islam MM et al (2016) Benzodiazepine use and risk of dementia in the elderly population: a systematic review and meta-analysis. Neuroepidemiology 47:181–191PubMedPubMedCentralCrossRefGoogle Scholar
  163. Issa AN (2016) Association of cognitive performance with time at altitude, sleep quality, and acute mountain sickness symptoms. Wilderness Environ Med 27:371–378PubMedCrossRefGoogle Scholar
  164. Iwagami M et al (2019) Associations between self-reported hearing loss and outdoor activity limitations, psychological distress and self-reported memory loss among older people: analysis of the 2016 Comprehensive Survey of Living Conditions in Japan. Geriatr Gerontol Int 19:747–754PubMedCrossRefGoogle Scholar
  165. Jarrin DC et al (2018) Insomnia and hypertension: a systematic review. Sleep Med Rev 41:3–38PubMedCrossRefGoogle Scholar
  166. Javanshiri K et al (2019a) Atherosclerosis, hypertension, and diabetes in Alzheimer’s disease, vascular dementia, and mixed dementia: prevalence and presentation. J Alzheimers Dis 65:1247–1258CrossRefGoogle Scholar
  167. Javanshiri K et al (2019b) Cardiovascular disease, diabetes mellitus, and hypertension in Lewy body disease: a comparison with other dementia disorders. J Alzheimers Dis (epud ahead)Google Scholar
  168. Jean-Pierre P et al (2014) Neuropsychological care and rehabilitation of cancer patients with chemobrain: strategies for evaluation and intervention development. Support Care Cancer 22:2251–2260PubMedPubMedCentralCrossRefGoogle Scholar
  169. Jedrziewski MK et al (2018) Feasibility of a randomized controlled trial to test the impact of African dance on cognitive function and risk of dementia: the REACT! Study. J Ment Health Clin Psychol 2:12–13PubMedPubMedCentralCrossRefGoogle Scholar
  170. Jin J et al (2019) Effects of digital device ownership on cognitive decline in a middle-aged and elderly population: longitudinal observational study. J Med Internet Res 21PubMedPubMedCentralCrossRefGoogle Scholar
  171. Jongstra S et al (2016) Antihypertensive withdrawal for the prevention of cognitive decline. Cochrane Database Syst Rev 11:CD011971PubMedGoogle Scholar
  172. Jordan BD (2013) The clinical spectrum of sport-related traumatic brain injury. Nat Rev Neurol 9:222–230PubMedCrossRefGoogle Scholar
  173. Kaiser R (2016) Zecken-übertragen Enzephalitis. Nervenarzt 87:667–680PubMedCrossRefGoogle Scholar
  174. Kakkera K et al (2018) Association of chronic obstructive pulmonary disease with mild cognitive impairment and dementia. Curr Opin Pulm Med 24:173–178PubMedCrossRefGoogle Scholar
  175. Kakutani S et al (2019) Green tea intake and risks for dementia, Alzheimer’s disease, mild cognitive impairment, and cognitive impairment: a systematic review. Nutrients 11Google Scholar
  176. Kao CC et al (2017) Long-term risk of dementia following acute kidney injury: a population-based study. Tzu Chi Med J.  https://doi.org/10.4103/tcmj.tcmj_40_17PubMedPubMedCentralCrossRefGoogle Scholar
  177. Karp A et al (2009) Mentally stimulating activities at work during midlife and dementia risk after 75: follow-up study from the Kungsholmen project. Am J Geriatr Psychiatry 17:227–236PubMedCrossRefGoogle Scholar
  178. Karstens AJ et al (2019) Associations of the mediterranean diet with cognitive and neuroimaging phenotypes of dementia in healthy older adults. Am J Clin Nutr 109:361–368PubMedPubMedCentralCrossRefGoogle Scholar
  179. Kato K et al (2013) Personality, self-rated health, and cognition in centenarians: do personality and self-rated health relate to cognitive function in advanced age? Aging 5:183–191PubMedPubMedCentralCrossRefGoogle Scholar
  180. Kato T et al (2018) Oral administration of Porphyromonas gingivalis alters the gut microbiome and serum metabolome. mSphere 3:e00460-18PubMedPubMedCentralCrossRefGoogle Scholar
  181. Kato H et al (2019) Tooth loss-associated cognitive impairment in the elderly: a community-based study in Japan. Intern Med 58:1411–1416PubMedPubMedCentralCrossRefGoogle Scholar
  182. Kaufman MJ et al (2019) Supraphysiologic-dose anabolic-androgenic steroid use: a risk factor for dementia? Neurosci Biobehav Rev 100:180–207PubMedCrossRefGoogle Scholar
  183. Kaup AR et al (2019) Conscientiousness is associated with lower risk of dementia among black and white older adults. Neuroepidemiology 52:86–92PubMedCrossRefGoogle Scholar
  184. Khondoker M et al (2017) Positive and negative experiences of social support and risk of dementia in later life: an investigation using the English Longitudinal Study of Aging. J Alzheimers Dis 58:99–108PubMedPubMedCentralCrossRefGoogle Scholar
  185. Kilian J et al (2018) The emerging risk of exposure to air pollution on cognitive decline and Alzheimer’s disease – evidence from epidemiological and animal studies. Biomed J 41:141–162PubMedPubMedCentralCrossRefGoogle Scholar
  186. Killin LO et al (2016) Environmental risk factors for dementia: a systematic review. BMC Geriatr 16:175PubMedPubMedCentralCrossRefGoogle Scholar
  187. Kim Y-S et al (2015) Caffeine intake from coffee or tea and cognitive disorders: a meta-analysis of observational studies. Neuroepidemiology 44:51–63PubMedCrossRefGoogle Scholar
  188. Kim EK et al (2017a) Relationship between chewing ability and cognitive impairment in the rural elderly. Arch Gerontol Geriatr 70:209–213PubMedCrossRefGoogle Scholar
  189. Kim GH et al (2017b) Effect of individual and district-level socioeconomic disparities on cognitive declline in community-dwellling elderly in Seoul. JKMSGoogle Scholar
  190. Kim CT et al (2018) Exposure to general anesthesia and risk of dementia: a nationwide population-based cohort study. J Alzheimers Dis 63:395–405PubMedCrossRefGoogle Scholar
  191. Kim D et al (2019) Risk of dementia in stroke-free patients diagnosed with atrial fibrillation: data from a population-based cohort. Eur Heart J 40:2313–2323PubMedCrossRefGoogle Scholar
  192. Kivimäki M et al (2018) Body mass index and risk of dementia: analysis of individual-level data from 1.3 million individuals. Alzheimers DementGoogle Scholar
  193. Kivipelto M et al (2006) Risk score for the prediction of dementia risk among 20 years in middle-aged people: a longitudinal population-based study. Lancet Neurol 5:735–741PubMedCrossRefGoogle Scholar
  194. Knight A et al (2016) Is the mediterranean diet a feasible approach to preserving cognitive function and reducing risk of dementia for older adults in Western countries? New insights and future directions. Ageing Res Rev 25:85–101PubMedCrossRefGoogle Scholar
  195. Knopman DS et al (2018) Midlife vascular risk factors and midlife cognitive status in relation to prevalence of mild cognitive impairment and dementia in later llife: the Atherosclerosis Risk in Communities Study. Alzheimers DementGoogle Scholar
  196. Kodesh A et al (2019) Exposure to antidepressant medication and the risk of incident dementia. Am J Geriatr PsychiatryGoogle Scholar
  197. Koh IS et al (2019) Body fat mass and risk of cerebrovascular lesions: the PRESENT (Prevention of Stroke and Dementia) project. Int J Environ Res Public Health 16PubMedCentralCrossRefPubMedGoogle Scholar
  198. Köhler CA et al (2016) The gut-brain axis, including the microbiome, leaky gut and bacterial translocation: mechanisms and pathophysiological role in Alzheimer’s disease. Curr Pharm Des 22(40):6152–6166PubMedCrossRefGoogle Scholar
  199. Korthauser LE et al (2018) Negative affect is associated with higher risk of incident cognitive impairment in nondepressed postmenopausal women. J Gerontol A Biol Sci Med SciGoogle Scholar
  200. Kostev K et al (2019) Analysis of the effects of selective serotonin (and noradrenaline) reuptake inhibitors on the risk of dementia in patients with depression. J Alzheimers Dis 69:577–583PubMedCrossRefGoogle Scholar
  201. Kowalski K, Mulak A (2019) Brain-gut-microbiota axis in Alzheimer’s disease. J Neurogastroenterol Motil 25:48–60PubMedPubMedCentralCrossRefGoogle Scholar
  202. Kryscio RJ et al (2017) Association of antioxidant supplement use and dementia in the Prevention of Alzheimer’s Disease by Vitamin E and Selenium Trial (PREADViSE). JAMA Neurol 74:567–573PubMedPubMedCentralCrossRefGoogle Scholar
  203. Kulmala J et al (2014) Association between mid- to late life physical fitness and dementia: evidence from the CAIDE study. J Intern Med 276:296–307PubMedCrossRefGoogle Scholar
  204. Kurl S et al (2018) Cardiorespiratory fitness and risk of dementia: a prospective population-based cohort study. Age Ageing 47:611–614PubMedCrossRefGoogle Scholar
  205. Kuzma E et al (2018) Stroke and dementia risk: a systematic review and meta-analysis. Alzheimers Dement 14:1416–1426PubMedPubMedCentralCrossRefGoogle Scholar
  206. Lahav Y et al (2018) Telomere length and depression among ex-prisoners of war: the role of subjective age. J Gerontol B Psychol Sci Soc SciGoogle Scholar
  207. Laitala VS et al (2009) Coffee drinking in middle age is not associated with cognitive performance in old age. Am J Clin Nutr 90:640–646PubMedCrossRefGoogle Scholar
  208. Landry GJ et al (2014) Buying time: a rationale for examining the use of circadian rhythm and sleep interventions to delay progression of mild cognitive impairment to Alzheimer’s disease. Front Aging Neurosci 6:325PubMedPubMedCentralCrossRefGoogle Scholar
  209. Lanfranchi PA et al (2009) Nighttime blood pressure in normotensive subjects with chronic insomnia: implications for cardiovascular risk. Sleep 32:760–766PubMedPubMedCentralCrossRefGoogle Scholar
  210. Langballe EM et al (2015) Alcohol consumption and risk of dementia up to 27 years later in large, population-based sample: the HUNT study, Norway. Eur J Epidemiol 30:1049–1056PubMedPubMedCentralCrossRefGoogle Scholar
  211. Larsson S et al (2018) Coffee consumption and risk of dementia and Alzheimer’s disease: a dose-response meta-analysis of prospective studies. Nutrients 10PubMedCentralCrossRefPubMedGoogle Scholar
  212. Latourte A et al (2018) Uric acid and incident dementia over 12 years of follow-up: a population-based cohort study. Ann Rheum Dis 77:328–335PubMedCrossRefGoogle Scholar
  213. Lauriola M et al (2018) Neurocognitive disorders and dehydration in older patients: clinical experience supports the hydromolecular hypothesis of dementia. Nutrients 10PubMedCentralCrossRefPubMedGoogle Scholar
  214. Lee Y et al (2016) Do cognitive leisure activities really matter in the relationship between education and cognition? Evidence from the aging, demographics, and memory study (ADAMS). Aging Ment Health 20:252–261PubMedCrossRefGoogle Scholar
  215. Lee AK et al (2018a) Severe hypoglycemia, mild cognitive impairment, dementia and brain volumes in older adults with type 2 diabetes: the Atherosclerosis Risk in Communities (ARIC) cohort study. Diabetologia 61:1956–1965PubMedPubMedCentralCrossRefGoogle Scholar
  216. Lee DH et al (2018b) Neurotoxic chemicals in adipose tissue: a role in puzzling findings on obesity and dementia. NeurologyGoogle Scholar
  217. Lee J et al (2018c) Use of sedative-hypnotics and the risk of Alzheimer’s dementia: a retrospective cohort study. PLoS One 13Google Scholar
  218. Leggett A et al (2018) „What hath night to do with sleep?“ The caregiving context and dementia caregivers’ nighttime awakenings. Clin Gerontol 41:158–166PubMedCrossRefGoogle Scholar
  219. Leng Y et al (2019) Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol 18:307–318PubMedPubMedCentralCrossRefGoogle Scholar
  220. Letellier N et al (2017) Sex-specific association between neighborhood characteristics and dementia: the three-city cohort. Alz DemGoogle Scholar
  221. Levy BR et al (2018) Positive age beliefs protect against dementia even among elders with high-risk gene. PLoS One 13Google Scholar
  222. Li Y et al (2017) Head injury as a risk factor for dementia and Alzheimer’s disease: a systematic review and meta-analysis of 32 observational studies. PLoS One:e169650.  https://doi.org/10.1371/journal.pone.0169650PubMedPubMedCentralCrossRefGoogle Scholar
  223. Liang X et al (2015) Short sitting height and low relative sitting height are associated with severe cognitive impairment among older women in an urban community in China. Neuroepidemiology 45:257–263PubMedCrossRefGoogle Scholar
  224. Licher S et al (2017) Viramin D and the risk of dementia: the Rotterdam study. J Alzheimers Dis 60:989–997PubMedCrossRefGoogle Scholar
  225. Lin CE et al (2018) Increased risk of dementia in patients with schizophrenia: a population-based cohort study in Taiwan. Eur Psychiatry 53:7–16PubMedCrossRefGoogle Scholar
  226. Ling H, Morris HR et al (2017) Mixed pathologies including chronic traumatic encephalopathy account for dementia in retired association football (soccer) players. Acta Neuropathol 133:337–352PubMedPubMedCentralCrossRefGoogle Scholar
  227. Lipnicki DM et al (2017) Age-related cognitive decline and associations with sex, education, and apolipoprotein E genotype across ethnocultural groups and geographic regions: a collaborative cohort study. PLoS MedGoogle Scholar
  228. Lipnicki DM et al (2019) Determinants of cognitive performance and decline in 20 diverse ethno-regional groups: a COSMIC collaboration cohort study. PLoS Med 16Google Scholar
  229. Lithell H et al (2003) The study on cognition and prognosis in the elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens 21:875–886PubMedCrossRefGoogle Scholar
  230. Little DM et al (2014) Imaging chronic traumatic brain injury as a risk factor for neurodegeneration. Alzheimers Dement 10:S188–S195PubMedCrossRefGoogle Scholar
  231. Liu H et al (2019) Marital status and dementia: evidence from the Health and Retirement Study. J Gerontol B Psychol Sci Soc SciGoogle Scholar
  232. Lloyd-Jones DM et al (2010) Defining an setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association strategic impact goal through 2020 and beyond. Circulation 121:586–613PubMedCrossRefGoogle Scholar
  233. Lorenzo-Lopez L et al (2017) Effects of degree of urbanization and lifetime longest-held occupation on cognitive impairment prevalence in an older Spanish population. Front PsycholGoogle Scholar
  234. Lotfield E et al (2018) Association of coffee drinking with mortality by genetic variation in caffeine metabolism: findings from the UK biobank. JAMA Intern MedGoogle Scholar
  235. Loughrey DG et al (2018) Association of age-related hearing loss with cognitive function, cognitive impairment, and dementia: a systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg 144:115–226PubMedCrossRefGoogle Scholar
  236. Lourenco MV et al (2019) Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med 25:165–175PubMedPubMedCentralCrossRefGoogle Scholar
  237. Low LF et al (2013) Does personality affect risk for dementia? A systematic review and meta-analysis. Am J Geriatr Psychiatry 21:713–728PubMedCrossRefGoogle Scholar
  238. Lukach AJ et al (2016) Rhythm experience and Africana culture trial (REACT!): a culturally salient intervention to promote neurocognitive health, mood, and well-being in older African Americans. Contemp Clin Trials 48:41–45PubMedPubMedCentralCrossRefGoogle Scholar
  239. Lutsey PL et al (2018) Sleep characteristics and risk of dementia and Alzheimer’s disease: the atherosclerosis Risk in Communities Study. Alzheimers Dement 14:157–166PubMedCrossRefGoogle Scholar
  240. Lutsey PL et al (2019) Impaired lung function, lung disease, and risk of incident dementia. Am J Respir Crit Care Med 199:1385–1396PubMedCrossRefGoogle Scholar
  241. Lysen TS et al (2018) Subjective sleep quality is not associated with incident dementia: the Rotterdam study. J Alzheimers Dis 64(1):239–247PubMedCrossRefGoogle Scholar
  242. Macedo AC et al (2017) Is sleep disruption a risk factor for Alzheimer’s disease? J Alzheimers Dis 58(4):993–1002PubMedCrossRefGoogle Scholar
  243. Mahmoudi E et al (2019) Can hearing aids delay time to diagnosis of dementia, depression, or falls in older adults? JAGSGoogle Scholar
  244. Mahmoudian Dehkordi S et al (2019) Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease – an emerging role for gut microbiome. Alzheimers Dement 15:76–92CrossRefGoogle Scholar
  245. Mancino R et al (2018) Glaucoma and Alzheimer disease: one age-related neurodegenerative disease of the brain. Curr Neuropharmacol 16:971–977PubMedPubMedCentralCrossRefGoogle Scholar
  246. Manousakis JE et al (2018) Advanced circadian timing and sleep fragmentation differently impact on memory complaint subtype in subjective cognitive decline. J Alzheimers Dis 66:565–577PubMedCrossRefGoogle Scholar
  247. Marini CM et al (2019) Psychological adjustment of aging Vietnam veterans: the role of social network ties in reengaging with wartime memories. GerontologyGoogle Scholar
  248. Maroon JC et al (2015) Chronic traumatic encephalopathy in contact sports: a systematic review of all reported pathological cases. PLoS One.  https://doi.org/10.1371/journal.pone.0117338PubMedPubMedCentralCrossRefGoogle Scholar
  249. Marseglia A et al (2019) Participating in mental, social, and physical leisure activities and having a rich social network reduce the incidence of diabetes-related dementia in a cohort of Swedish older adults. Diabetes Care 42:232–239PubMedCrossRefGoogle Scholar
  250. Matthews FE et al (2016) A two decade dementia incidence comparison from the Cognitive Functioning and Ageing Studies I and II. Nat Commun 7Google Scholar
  251. Mausbach BT et al (2011) Self-efficacy buffers the relationship between dementia caregiving stress and circulating concentrations of the proinflammatory cytokine interleukine-6. Am J Geriatr Psychiatry 19:64–71PubMedPubMedCentralCrossRefGoogle Scholar
  252. Mawanda F et al (2017) PTSD, psychotropic medication use, and the risk of dementia among US veterans: a retrospective cohort study. JAGS 65:1043–1050CrossRefGoogle Scholar
  253. Mayer F et al (2018a) An estimate of attributable cases of Alzheimer disease and vascular dementia due to modifiable risk factors: the impact of primary prevention in Europe and in Italy. Dement Geriatr Cogn DisordGoogle Scholar
  254. Mayer F et al (2018b) An estimate of attributable cases of Alzheimer disease and vascular dementia due to modifiable risk factors: the impact of primary prevention in Europe and Italy. Dement Geriatr Cogn DisordGoogle Scholar
  255. Mayer SE et al (2019) Cumulative lifetime stress exposure and leukocyte telomere length attrition: the unique role of stressor duration and exposure timing. Psychoneuroendocrinology 104:210–218PubMedCrossRefGoogle Scholar
  256. McCann A et al (2018) Effect of area-level socioeconomic deprivation on risk of cognitive dysfunction in older adults. JAGSGoogle Scholar
  257. McKee AC et al (2016) Repetitive head impacts and chronic traumatic encephalopathy. Neurosurg Clin N Am 27:529–535PubMedPubMedCentralCrossRefGoogle Scholar
  258. McKhann G et al (2011) The diagnosis of dementia due to Alzheimer’s disease. Alzheimers Dement 7:263–269PubMedPubMedCentralCrossRefGoogle Scholar
  259. McMillan JM et al (2018) Impact of pharmacological treatment of diabetes mellitus on dementia risk: systematic review and meta-analysis. BMJ Open Diabetes Res Care 6CrossRefGoogle Scholar
  260. Mickova E et al (2019) Does dog ownership affect physical activity, sleep, and self-reported health in older adults? Int J Environ Res Public Health 16PubMedCentralCrossRefPubMedGoogle Scholar
  261. Miller BJ et al (2010) An experimental study of the role of weight bias in candidate evaluation. Behav PsycholGoogle Scholar
  262. Moretti R et al (2017) Vitamin D, homocysteine, and folate in subcortical vascular dementia and Alzheimer dementia. Front Aging Neurosci 9Google Scholar
  263. Mortamais M et al (2018) Anxiety and 10-year-risk of incident dementia – an association shaped by depressive symptoms: results of the prospective three-city study. Front Neurosci 12:248PubMedPubMedCentralCrossRefGoogle Scholar
  264. Morton RE et al (2019) Migraine an the risk of all-cause dementia, Alzheimer’s disease, and vascular dementia: a prospective cohort study in community-dwelling older adults. Int J Geriatr PsychiatryGoogle Scholar
  265. Mostafavi H et al (2017) Identifying genetic variants that affect viability in large cohorts. PLoS Biol 15(9):e2002458.  https://doi.org/10.1371/journal.pbio.2002458CrossRefPubMedPubMedCentralGoogle Scholar
  266. Motamedi V et al (2018) Elevated tau and interleukin-6 concentrations in adults with obstructive sleep apnea. Sleep Med 43:71–76PubMedCrossRefGoogle Scholar
  267. Mukadam N et al (2017) The relationship of bilingualism compared to monolingualism to the risk of cognitive decline or dementia: a systematic review and meta-analysis. J Alzheimers Dis 58:45–54PubMedCrossRefGoogle Scholar
  268. Munro CA et al (2019) Stressful life events and cognitive decline: sex differences in the Baltimore Epidemiologic Catchment Area Follow-Up Study. Int J Geriatr Psychiatry 34:1008–1017PubMedCrossRefGoogle Scholar
  269. Myung M et al (2017) Occupational attainment as a risk factor for progression from mild cognitive impairment to Alzheimer’s disease: a CREDOS study. J Alzheimers Dis 55:283–292PubMedCrossRefGoogle Scholar
  270. Nakahori N et al (2018) A pathway from low socioeconomic status to dementia in Japan: results from the Toyama dementia survey. BMC Geriatr 18:102PubMedPubMedCentralCrossRefGoogle Scholar
  271. Nakahori N et al (2019) Socioeconomic status and remaining teeth in Japan: results from the Toyama dementia survey. BMC Public Health 19:691PubMedPubMedCentralCrossRefGoogle Scholar
  272. Nepal B et al (2014) Rising midlife obesity will worsen the future prevalence of dementia. PLoS OneGoogle Scholar
  273. Ng JB et al (2013) Heart disease as a risk factor for dementia. Clin Epidemiol 5:135–145Google Scholar
  274. Ng TP et al (2016) Metabolic syndrome and the risk of mild cognitive impairment and progression to dementia: follow-up of the Singapore Longitudinal Ageing Study Cohort. JAMA Neurol 73:456–463PubMedCrossRefGoogle Scholar
  275. Noble JM et al (2013) Poor oral hygiene as a chronic, potentially modifiable dementia risk factor: review of the literature. Curr Neurol Neurosci Rep 13:384PubMedPubMedCentralCrossRefGoogle Scholar
  276. Noguchi-Shinohara M et al (2014) Consumption of green tet al. but not black tea or coffee, is associated with reduced risk of cognitive decline. PLoS One 9PubMedPubMedCentralCrossRefGoogle Scholar
  277. Noguchi-Shinohara M et al (2019) Presence of a synergistic interaction between current cigarette smoking and diabetes mellitus on development of dementia in older adults. J Alzheimers Dis (epub ahead)Google Scholar
  278. Norby FL et al (2018) Association of left ventricular hypertrophy with cognitive decline and dementia risk over 20 years: the Atherosclerosis Risk In Communities-Neurocognitive Study (ARIC-NCS). Am Heart J 204:58–87PubMedPubMedCentralCrossRefGoogle Scholar
  279. Norton MC et al (2010) Greater risk of dementia when spouse has dementia? The Cache County Study. JAGS 58:895–900CrossRefGoogle Scholar
  280. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C (2014) Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol 13:788–794PubMedCrossRefGoogle Scholar
  281. O’Rourke HM et al (2017) Pilot of a tailored dance intervention to support function in people with cognitive impairment residing in long-term care: a brief report. Gerontol Geriatr MedGoogle Scholar
  282. Oghagbon EK et al (2019) Short height and poor education increase the risk of dementia in Nigerian type 2 diabetic women. Alzheimers Dement 11:493–499Google Scholar
  283. Oliveira D et al (2019) Is poor health literacy a risk factor for dementia in older adults? Systematic literature review of prospective cohort studies. Maturitas 124:8–14PubMedCrossRefGoogle Scholar
  284. Olsen I, Singhrao SK (2015) Can oral infection be a risk factor for Alzheimer’s disease? J Oral Microbiol 7:29143PubMedCrossRefGoogle Scholar
  285. Olsen I et al (2016) Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis, and Alzheimer’s disease. J Oral Microbiol 8:33029PubMedCrossRefGoogle Scholar
  286. Orkaby AR et al (2017) Metformin vs sulfonylurea use and risk of dementia in US veterans aged ≥ 65 years with diabetes. Neurology 89:1877–1885PubMedPubMedCentralCrossRefGoogle Scholar
  287. Osler M et al (2019) Hearing loss, cognitive ability, and dementia in mend age 19–78 years. Eur J Epidemiol 34(2):125–130PubMedCrossRefGoogle Scholar
  288. Oudin A et al (2016) Traffic-related air pollution and dementia incidence in Northern Sweden: a longitudinal study. Environ Health Perspect 124:306–312PubMedCrossRefGoogle Scholar
  289. Oudin A et al (2018) Association between air pollution from residential wood burning and dementia incidence in a longitudinal study in Northern Sweden. PLoS OneGoogle Scholar
  290. Oudin A et al (2019) Traffic-related air pollution as a risk factor for dementia: no clear modifying effects of ApoE4 in the Betula cohort. J Alzheimers DisGoogle Scholar
  291. Ouvrard C et al (2017) Do individual and geographical deprivationhave the same impact on the risk of dementia? A 25-year follow-up study. J Gerontol B Psychol Sci Soc SciGoogle Scholar
  292. Pal K et al (2018) Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes, and metabolic syndrome: a systematic review and meta-analysis. Soc Psychiatry Psychiatr Epidemiol 53:1149–1160PubMedPubMedCentralCrossRefGoogle Scholar
  293. Panza F et al (2015) Age-related hearing impairment – a risk factor and frailty marker for dementia and AD. Nat Rev Neurol 11:166–175PubMedCrossRefGoogle Scholar
  294. Panza F et al (2018) Sensorial frailty: age-related hearing loss and the risk of cognitive impairment and dementia in later life. Ther Adv Chronic DisGoogle Scholar
  295. Park KR et al (2018) Signal detection of benzodiazepine use and risk of dementia: sequence symmetry analysis using South Korean national healthcare database. Int J Clin Pharmacol 40:1568–1576CrossRefGoogle Scholar
  296. Pendlebury ST et al (2019) Incidence and prevalence of dementia associated with transient ischaemic attack and stroke: analysis of the population-based Oxford Vascular Study. Lancet Neurol 18:248–258PubMedPubMedCentralCrossRefGoogle Scholar
  297. Penninkilampi R et al (2018a) A systematic review and meta-analysis of the risk of dementia associated with benzodiazepine use, after controlling for protopathic bias. CNS Drugs 32:485–497PubMedCrossRefGoogle Scholar
  298. Penninkilampi R et al (2018b) The association between social engagement, loneliness, and risk of dementia: a systematic review and meta-analysis. J Alzheimers Dis 66:1610–1633CrossRefGoogle Scholar
  299. Pereira VH et al (2016) Adult body height is a good predictor of different dimensions of cognitive function in aged individuals: a cross-sectional study. Front Aging Neurosci 8Google Scholar
  300. Pertl MM et al (2015) Risk of cognitive and functional impairment in spouses of people with dementia: evidence from the Health and Retirement Study. J Geriatr Psychiatry Neurol 28:260–271PubMedCrossRefGoogle Scholar
  301. Peters R et al (2008) Incident dementia and blood pressure lowering in the hypertension in the very elderly trial cognitive function assessment (HYVET-COG): a double-blind placebo-controlled trial. Lancet Neurol 7:683–689PubMedCrossRefGoogle Scholar
  302. Peters R et al (2018) Orthostatic hypotension and symptomatic subclinical orthostatic hypotension increase risk of cognitive impairment: an integrated evidence review and analysis of a large older adult hypertensive cohort. Eur Heart J 39:3135–3143PubMedPubMedCentralCrossRefGoogle Scholar
  303. Petersson SD et al (2016) Mediterranean diet, cognitive function, and dementia: a systematic review of the evidence. Adv Nutr 15:889–904CrossRefGoogle Scholar
  304. Phillips L et al (2017) Findings of cognitive impairment at high altitude: relationships to acetazolamide use and acute mountain sickness. High Alt Med Biol 18:121–127PubMedCrossRefGoogle Scholar
  305. Picton JD et al (2018) Benzodiazepine use and cognitive decline in the elderly. Am J Health Syst Pharm 75:e6–e12PubMedCrossRefGoogle Scholar
  306. Piersma D et al (2018) Adherence to driving cessation advice given to patients with cognitive impairment and consequences for mobility. BMC Geriatr.  https://doi.org/10.1186/s12877-018-0910-4
  307. Pistollato F et al (2016) Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr Rev 74:624–634PubMedCrossRefGoogle Scholar
  308. Pistollato F et al (2018) Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: a focus on human studies. Pharmacol Res 131:32–43PubMedCrossRefGoogle Scholar
  309. Polsek D et al (2018) Obstructive sleep apnea and Alzheimer’s disease: in search of shared pathomechanisms. Neurosci Biobehav Rev 86:142–149PubMedPubMedCentralCrossRefGoogle Scholar
  310. Porter KM et al (2019) Hyperglycemia and metformin use are associated with B-vitamin deficiency and cognitive dysfunction in older adults. J Clin Endocrinol MetabGoogle Scholar
  311. Postuma RB et al (2019) Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain 142:744–759PubMedPubMedCentralCrossRefGoogle Scholar
  312. Potier F et al (2018) Impact of caregiving for older people and pro-inflammatory biomarkers among caregivers: a systematic review. Aging Clin Exp Res 30:119–132PubMedCrossRefGoogle Scholar
  313. Price BR et al (2018) Hyperhomocysteinemia as a risk factor for vascular contributions to cognitive impairment and dementia. Front Aging Neurosci 10Google Scholar
  314. Prince M et al (2011) Leg length, skull circumference, and the prevalence of dementia in low and middle income countries: a 10/66 population-based cross sectional survey. Int Psychogeriatr 23:202–213.  https://doi.org/10.1017/S1041610210001274CrossRefPubMedGoogle Scholar
  315. Prince M et al (2016) Recent global trends in the prevalence and incidence of dementia and survival with dementia. Alzheimers Res Ther.  https://doi.org/10.1186/s13195-016-0188-8
  316. Prince M et al (2019) Risk reduction of cognitive decline and dementia. WHO, GenfGoogle Scholar
  317. Puterman E et al (2016) Lifespan adversity and later adulthood telomere length in the nationally representative US Health and Retirement Study. PNAS:E6335–E6342Google Scholar
  318. Qizilbash N et al (2015) BMI and risk of dementia in two million people over two decades: a retrospective cohort study. Lancet Diabetes EndocrinolGoogle Scholar
  319. Radford K et al (2017) Childhood stress and adversity is associated with late-life dementia in Aboriginal Australians. Am J Geriatr Psychiatry 25:1097–1106PubMedCrossRefGoogle Scholar
  320. Rafnsson SB et al (2017) Loneliness, social integration, and incident dementia over 6 years: prospective findings from the English Longitudinal Study of Ageing. J Gerontol B Psychol Sci Soc Sci.  https://doi.org/10.1093/geronb/gbx087CrossRefGoogle Scholar
  321. Raina SK et al (2016) Dementia in a tribal landlocked elderly population at high altitude: what explains the lower prevalence? J Neurosci Rural Pract 67:513–518Google Scholar
  322. Ramakers IH et al (2015) The effect of psychological distress and personality traits on cognitive performances and the risk of dementia in patients with mild cognitive impairment. J Alzheimers Dis 46:805–812PubMedCrossRefGoogle Scholar
  323. Rawlings AM et al (2018) Association of orthostatic hypotension with incident dementia, stroke, and cognitive decline. Neurology 91:e759–e768PubMedPubMedCentralCrossRefGoogle Scholar
  324. Redelmeier DA et al (2019) Assciation between statin use and risk of dementia after a concussion. JAMA NeurolGoogle Scholar
  325. Rehm J et al (2019) Alcohol use and dementia: a systematic scoping review. Alzheimers Res Ther 11(1):1.  https://doi.org/10.1186/s13195-018-0453-0CrossRefPubMedPubMedCentralGoogle Scholar
  326. Ribe AR et al (2015) Long-term risk of dementia in persons with schizophrenia: a Danish population-based cohort study. JAMA Psychiatry 72(11):1095–1101PubMedCrossRefGoogle Scholar
  327. Richardson K et al (2019) History of benzodiazepine prescriptions and risk of dementia: possible bias due to prevalent users and covariate measurement timing in a nested case-control study. Am J Epidemiol 188:1228–1236PubMedPubMedCentralCrossRefGoogle Scholar
  328. Ritchie G et al (2003) Biological and health effects of exposure to kerosene-based jet fuels and performance additives. J Toxicol Environ Health B Crit Rev 6(4):357–451PubMedCrossRefGoogle Scholar
  329. Ritchie K et al (2007) The neuropathologic effects of caffeine: a prospective population study (the Three City Study). Neurology 69:536–545PubMedCrossRefGoogle Scholar
  330. Robitaille A et al (2018) Transitions across cognitive states and death amont older adults in relation to education: a multistate survival model using data from six longitudinal studies. Alzheimers DementGoogle Scholar
  331. Rohde C et al (2016) Does schizophrenia in offspring increase the risk of developing Alzheimer’s dementia? Dement Geriatr Cogn Disord Extra 6:361–373CrossRefGoogle Scholar
  332. Rosenberg A et al (2018) Multidomain lifestyle intervention benefits a large elderly population at risk for cognitive decline and dementia regardless of baseline characteristics: the FINGER trial. Alzheimers Dement 14:263–270PubMedCrossRefGoogle Scholar
  333. Røttereng AKS et al (2015) Headache as a predictor for dementia: the HUNT study. J Headache Pain 16:89.  https://doi.org/10.1186/s10194-015-0573-xCrossRefPubMedCentralPubMedGoogle Scholar
  334. Roubaud-Baudron C et al (2013) Does Helicobacter pylori infection increase incidence of dementia? The presonnes agées QUID study. J Am Geriatr Soc 61:74–78PubMedCrossRefGoogle Scholar
  335. Roughead EE et al (2017) Posttraumatic stress disorders, antipsychotic use and risk of dementia in veterans. JAGS 65:1521–1526CrossRefGoogle Scholar
  336. Ruitenberg A et al (2002) Alcohol consumption and risk of dementia: the Rotterdam study. Lancet 359(9303):281–286PubMedCrossRefGoogle Scholar
  337. Rurik I et al (2014) A public health threat in Hungary: obesity 2013. BMC Public HealthGoogle Scholar
  338. Russ TC et al (2013) Socioeconomic status as a risk factor for dementia death: individual participant meta-analysis of 86 508 men and women from the UK. Br J Psychiatry 203:10–17PubMedPubMedCentralCrossRefGoogle Scholar
  339. Russ TC et al (2014) Height in relation to dementia death: individual participant metaanalysis of 18 UK prospective cohort studies. Br J Psychiatry 205:348–354PubMedPubMedCentralCrossRefGoogle Scholar
  340. Russ TC et al (2015) Geographical variation in dementia: examining the role of environmental factors in Sweden and Scotland. EpidemiologyGoogle Scholar
  341. Russo R et al (2017) Gut-brain axis: role of lipids in the regulation of inflammation, pain and CNS diseases. Curr Med ChemGoogle Scholar
  342. Ryden L et al (2019) Atrial fibrillation increases the risk of dementia amongst older adults even in the absence of stroke. J Intern Med 286:101–110PubMedCrossRefGoogle Scholar
  343. Sachdev P et al (2015) The prevalence of mild cognitive impairment in diverse geographical and ethnocultural regions: the COSMIC collaboration. PLoS MedGoogle Scholar
  344. Sadahiro R et al (2019) Midlife cancer/diabetes and risk of dementia and mild cognitive impairment: a population-based prospective cohort study in Japan. Psychiatry Clin Neurosci 73:594–602CrossRefGoogle Scholar
  345. Salinas J et al (2017) Associations between social relationship measures, serum brain-derived neurotrophic factor, and risk of stroke and dementia. Alzheimers Dement (N Y) 3(2):229–237Google Scholar
  346. Santabárbara J et al (2019a) Anxiety and risk of dementia: systematic review and meta-analysis of prospective cohort studies. Maturitas 19:14–20.  https://doi.org/10.1016/j.maturitas.2018.10.014CrossRefGoogle Scholar
  347. Santabárbara J et al (2019b) Clinically relevant anxiety and risk of Alzheimer’s disease in an elderly community sample: 4.5 years of follow-up. J Affect Disord 250:16–20PubMedCrossRefGoogle Scholar
  348. Santabárbara J et al (2019c) Clinically significant anxiety as a risk factor for dementia in the elderly community. Acta Psychiatr Scand 139:6–14PubMedCrossRefGoogle Scholar
  349. Satizabal CL et al (2016) Incidence of dementia over three decades in the Framingham Heart Study. N Engl J Med 374:523–532PubMedPubMedCentralCrossRefGoogle Scholar
  350. Scheepers LEJM et al (2019) Urate and risk of Alzheimer’s disease and vascular dementia: a population-based study. Alzheimers Dement 15:754–763PubMedCrossRefGoogle Scholar
  351. Scherrer JF et al (2019) Metformin and sulfonylurea use and risk of incident dementia. Mayo Clin Proc 94:1444–1456PubMedCrossRefGoogle Scholar
  352. Schilling S et al (2017) Differential associations of plasma lipids with incident dementia and dementia subtypes in the 3C study: a longitudinal, population-based prospective cohort study. PLoS MedGoogle Scholar
  353. Schrijvers EM et al (2012) Is dementia incidence declining? Trends in dementia incidence since 1990 in the Rotterdam Study. Neurology 78:1456–1463PubMedCrossRefGoogle Scholar
  354. Schwarzinger M et al (2018) Contribution of alcohol use disorders to the burden of dementia in France 2008-13: a nationwide retrospective cohort study. Lancet Public Health (3):e124–e132.  https://doi.org/10.1016/S2468-2667(18)30022-7PubMedCrossRefGoogle Scholar
  355. Schwerthoeffer D et al (2012) Senile anorexia: three cases with complicated treatment and occurrences of Pisa syndrome. Int J Geriatr PsychiatryGoogle Scholar
  356. Seifert CL et al (2012) Depressive symptoms and the risk of ischemic stroke in the elderly – influence of age and sex. PLoS One 7Google Scholar
  357. Semenov YR et al (2016) Association between vestibular and cognitive function in US adults: data from the National Health and Nutrition Examination Survey. J Gerontol/Med Sci 71:243–250CrossRefGoogle Scholar
  358. Shaaban CE et al (2019) Independent and joint effects of vascular and cardiometabolic risk factor pairs for risk of all-cause dementia: a prospective population-based study. Int PsychogeriatrGoogle Scholar
  359. Shalev D et al (2017) Metabolism and memory: obesity, diabetes, and dementia. Biol PsychiatryGoogle Scholar
  360. Shash D et al (2016) Benzodiazepine, psychotropic medication, and dementia: a population-based cohort study. Alzheimers Dement 12:604–613PubMedCrossRefGoogle Scholar
  361. Shi L et al (2018a) Sleep disturbances increase the risk of dementia: a systematic review and meta-analysis. Sleep Med Rev 40:4–16PubMedCrossRefGoogle Scholar
  362. Shi Y et al (2018b) A novel perspective linkage between kidney function and Alzheimer’s disease. Front Cell Neurosci 12:384PubMedPubMedCentralCrossRefGoogle Scholar
  363. Shi Q et al (2019) Effect of metformin on neurodegenerative disease among elderly adult US veterans with type 2 diabetes mellitus. BMJ Open 9PubMedPubMedCentralCrossRefGoogle Scholar
  364. Shibata A et al (2012) Physical activity of Japanese older adults who own and walk dogs. Am J Prev Med 43:429–433PubMedCrossRefGoogle Scholar
  365. Shin SH et al (2018) Widowhood status as a risk factor for cognitive decline among older adults. Am J Psychiatry 26:778–787Google Scholar
  366. Sibbett RA et al (2018) Physical fitness and dementia risk in the very old: a study of the Lothian Birth Cohort 1921. BMC Psychiatry.  https://doi.org/10.1186/s12888-018-1851-3
  367. Siebert JS et al (2018) Attitude toward own aging as a risk factor for cognitive disorder in old age: 12-year evidence from ILSE study. Psychol Aging 33:461–472PubMedCrossRefGoogle Scholar
  368. Sindi S et al (2017a) Midlife work-related stress is associated with late-life cognition. J Neurol 264:1996–2002PubMedPubMedCentralCrossRefGoogle Scholar
  369. Sindi S et al (2017b) Midlife work-related stress increases dementia risk in later life: the CAIDE 30-year study. J Gerontol B Psychol Sci Soc Sci 72:1044–1053PubMedGoogle Scholar
  370. Singh JA et al (2018) Gout and dementia in the elderly: a cohort study of Medicare claims. BMC Geriatr 18Google Scholar
  371. Singh-Manoux A et al (2017) Atrial fibrillation as a risk factor for cognitive decline and dementia. Eur Heart J 38:2612–2618PubMedPubMedCentralCrossRefGoogle Scholar
  372. Singh-Manoux A et al (2018) Obesity trajectories and risk of dementia: 28 years of follow-up in the Whitehall II study. Alzheimers DementGoogle Scholar
  373. Singhrao SK, Olsen I (2018) Are Porphyromonas gingivalis outer membrane vesicles microbullets for sporadic Alzheimer’s disease manifestation? J Alzheimers Dis Rep 2:219–228PubMedPubMedCentralCrossRefGoogle Scholar
  374. Skogen JC et al (2015) Midlife mental distress and risk for dementia up to 27 years later: the Nord-Trøndelag Health Study (HUNT) in linkage with dementia registry in Norway. BMC Geriatr 15:23PubMedPubMedCentralCrossRefGoogle Scholar
  375. Small BJ et al (2015) Is cancer a risk factor for cognitive decline in late life? Gerontology 61:561–566PubMedCrossRefGoogle Scholar
  376. Smith PF (2017) The vestibular system and cognition. Curr Opin Neurol 30:84–89PubMedCrossRefGoogle Scholar
  377. Smith AD et al (2018) Homocysteine and dementia: an international consensus statement. J Alzheimers Dis 62:561–570PubMedPubMedCentralCrossRefGoogle Scholar
  378. Smolensky MH et al (2016) Circadian disruption: new clinical perspective of disease pathology and basis for chronotherapeutic intervention. Chronobiol Int 33:1101–1119PubMedCrossRefGoogle Scholar
  379. Sochocka M et al (2019) The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease – a critical review. Mol Neurobiol 56:1841–1851PubMedCrossRefGoogle Scholar
  380. Solas M et al (2017) Inflammation and gut-brain axis link obesity to cognitive dysfunction: plausible pharmacological interventions. Curr Opin PharmacolGoogle Scholar
  381. Solfrizzi V et al (2015) Coffee consumption habits and the risk of MCI: the Italian Longitudinal Study on Aging. J Alzheimers DisGoogle Scholar
  382. Solfrizzi V et al (2019) Biopsychosocial frailty and the risk of incident dementia: the Italian longitudinal study on aging. Alzheimers Dement 15:1019–1028PubMedCrossRefGoogle Scholar
  383. Sommerlad A et al (2019) Association of social contact with dementia and cognition: 28-year follow-up of the Whitehall II cohort study. PLoS Med.  https://doi.org/10.1371/journal.pmed.1002862PubMedPubMedCentralCrossRefGoogle Scholar
  384. St John PD et al (2016) Rural residence and risk of dementia. Can J Rural Med 21:73–79PubMedGoogle Scholar
  385. Stein PS et al (2007) Tooth loss, dementia and neuropathology in the Nun study. J Am Dent Assoc 138:1314–1322PubMedCrossRefGoogle Scholar
  386. Stern RA et al (2013) Clinical presentation of chronic traumatic encephalopathy. Neurology 81:1122–1129PubMedPubMedCentralCrossRefGoogle Scholar
  387. Stirland LE et al (2018) Passive smoking as a risk factor for dementia and cognitive impairment: a systematic review of observational studies. Int Psychogeriatr 30:1177–1187PubMedCrossRefGoogle Scholar
  388. Strand BH et al (2015) Income in midlife and dementia related mortality over three decades: a Norwegian prospective study. eNeurologicalSci 1:24–29PubMedPubMedCentralCrossRefGoogle Scholar
  389. Strand BH et al (2017) Weight change in midlife and risk of mortality from dementia up to 35 years later. J Gerontol A Biol Sci 72(6):855–860Google Scholar
  390. Strand AK et al (2019) Is there a relationship between anaesthesia and dementia? Acta Anaesthesiol Scand 63:440–447PubMedCrossRefGoogle Scholar
  391. Su CW et al (2016) Association between glaucoma and the risk of dementia. Medicine 95PubMedPubMedCentralCrossRefGoogle Scholar
  392. Sugiyama K et al (2016) Association between coffee consumption and incident risk of disabling dementia in elderly Japanese: the Ohsaki Cohort 2006 Study. J Alzheimers Dis 50:491–500PubMedCrossRefGoogle Scholar
  393. Suh SW et al (2016) Impacts of illiteracy on the risk of dementia: a global health perspective. J Alzheimers Dis 53:731–741PubMedCrossRefGoogle Scholar
  394. Sundboll J et al (2017) Higher risk of vascular dementia in myocardial infarction survivors. Circulation 137:567–577PubMedCrossRefGoogle Scholar
  395. Sundström A et al (2016) Marital status and risk of dementia: a nationwide population-based prospective study from Sweden. BMJ Open 6(1):e008565.  https://doi.org/10.1136/bmjopen-2015-008565CrossRefPubMedPubMedCentralGoogle Scholar
  396. Sutin AR et al (2018a) Facets of conscientiousness and risk of dementia. Psychol Med 48:974–982PubMedCrossRefGoogle Scholar
  397. Sutin AR et al (2018b) Psychological well-being and risk of dementia. Int J Geriatr Psychiatry 33:743–747PubMedPubMedCentralCrossRefGoogle Scholar
  398. Sutin AR et al (2019) Perceived weight discrimination and risk of incident dementia. Int J Obes 43:1130–1134CrossRefGoogle Scholar
  399. Tan J et al (2018) Study protocol for a randomized controlled trial of choral singing intervention to prevent cognitive decline in at-risk older adults living in the community. Front Aging Neurosci 10Google Scholar
  400. Tana C et al (2018) Uric acid and cognitive function in older individuals. Nutrients 10PubMedCentralCrossRefPubMedGoogle Scholar
  401. Taniguchi Y et al (2018) Physical, social, and psychological characteristics of community-dwelling elderly Japanese dog and cat owners. PLoS One 13Google Scholar
  402. Tapiainen V et al (2018) The risk of Alzheimer’s disease associated with benzodiazepines and related drugs: a nested case-control study. Acta Psychiatr Scand 138:91–100PubMedCrossRefGoogle Scholar
  403. Teipel S et al (2016) Association between smoking and cholinergic basal forebrain volume in healthy aging and prodromal and dementia stages of Alzheimer’s disease. J Alzheimers Dis 52:1443–1451PubMedCrossRefGoogle Scholar
  404. Terracciano A et al (2017) Personality traits and risk of cognitive impairment and dementia. J Psychiatr Res 89:22–27PubMedPubMedCentralCrossRefGoogle Scholar
  405. Thacker EL et al (2014) The American Heart Association’s Life’s Simple 7 and incident cognitive impairment: the REasons for Geographic and Racial Differences in Stroke (REGARDS) study. J Am Heart Assoc 3Google Scholar
  406. Thapa DK et al (2018) Migration of adult children and mental health of older parents „left behind“: an integrated review. PLoS OneGoogle Scholar
  407. Thomson EM (2019) Air pollution, stress, and allostatic load: linking systemic and central nervous system impacts. J Alzheimers Dis 69:597–614PubMedPubMedCentralCrossRefGoogle Scholar
  408. Thomson RS et al (2017) Hearing loss as a risk factor for dementia: a systematic review. Laryngoscope Investig Otolaryngol 2(2):69–79PubMedPubMedCentralCrossRefGoogle Scholar
  409. Tolea M et al (2018) Sarcopenic obesity and cognitive performance. Clin Interv Aging 13:1111–1119PubMedPubMedCentralCrossRefGoogle Scholar
  410. Tomata Y et al (2016) Green tea consumption and the risk of incident dementia in elderly Japanese: the Ohsaki Cohort 2006 study. Am J Geriatr Psychiatry 24:881–889PubMedCrossRefGoogle Scholar
  411. Tonsekar PP et al (2017) Periodontal disease, tooth loss and dementia: is there a link? Gerontology 34:151–163Google Scholar
  412. Tsapanou A et al (2018) Sleep ad subjective cognitive decline in cognitively healthy elderly: results from two cohorts. J Sleep Res 28(5):e12759PubMedPubMedCentralGoogle Scholar
  413. Tschanz JT et al (2013) Stressful life events and cognitive decline in late life: moderation by education and age. The Cache County Study. Int J Geriatr Psychiatry 28:821–830PubMedCrossRefGoogle Scholar
  414. Tsuji T et al (2019) Community-level sports group participation and the risk of cognitive impairment. Med Sci Sports Exerc.  https://doi.org/10.1249/MSS.0000000000002050CrossRefGoogle Scholar
  415. Turana Y et al (2019) Hypertension and dementia: a comprehensive review from the HOPE Asia network. J Clin Hypertens 21:1091–1098CrossRefGoogle Scholar
  416. Tynkkynen J et al (2016) Apolipoproteins and HDL cholesterol do not associated with the risk of future dementia and Alzheimer’s disease: the National Finnish population study (FINRISK). Age 38:465–473PubMedPubMedCentralCrossRefGoogle Scholar
  417. Uchida Y et al (2019) Age-related hearing loss and cognitive decline – the potential mechanisms linking the two. Auris Nasus Larynx 46(1):1–9PubMedCrossRefGoogle Scholar
  418. Valls-Pedret C et al (2015) Mediterranean diet and age- related cognitive decline – a randomized clinical trial. JAMA Intern MedGoogle Scholar
  419. Van Charante EPM et al (2016) Effectivenness of a 6-year multidomain vascular care interventino to prevent dementia (preDIVA): a cluster-randomised controlled trial. Lancet 388:797–805CrossRefGoogle Scholar
  420. Van der Willik KD et al (2018) Cancer and dementia: two sides of the same coin? Eur J Clin InvestigGoogle Scholar
  421. Vancampfort D et al (2018) Mild cognitive impairment and sedentary behavior: a multinational study. Exp Gerontol 108:174–180PubMedCrossRefGoogle Scholar
  422. Vann Jones SA et al (2014) Heading in football, long-term cognitive decline and dementia: evidence from screening retired professional footballers. Br J Sports Med 48:159–161PubMedCrossRefGoogle Scholar
  423. Vitaliano PP et al (2011) Does caring for a spouse with dementia promote cognitive decline? A hypothesis and proposed mechanisms. JAGS 59:900–908CrossRefGoogle Scholar
  424. Vogt NM et al (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7:13537PubMedPubMedCentralCrossRefGoogle Scholar
  425. Von Känel R et al (2012) Effect of Alzheimer caregiving on circulating levels of C-reactive protein and other biomarkers relevant to cardiovascular disease risk: a longitudinal study. Gerontology 58:354–365CrossRefGoogle Scholar
  426. Wajman JR et al (2018) Lifestyle patterns as a modifiable risk factor for late-life cognitive decline: a narrative review regarding dementia prevention. Curr Aging Sci 11:90–99PubMedCrossRefGoogle Scholar
  427. Walker KA et al (2017) Defining the relationship between hypertension, cognitive decline, and dementia: a review. Curr Hypertens Rep 19Google Scholar
  428. Wang F et al (2019) Smaller head circumference combined with lower education predicts high risk of incident dementia: the Shanghai Aging Study. Neuroepidemiology.  https://doi.org/10.1159/000501103PubMedCrossRefGoogle Scholar
  429. Weinstein G et al (2019) Association of metformin, sulfonylurea and insulin use with brain structure and function and risk of dementia and Alzheimer’s disease: pooled analysis from 5 cohorts. PLoS OneGoogle Scholar
  430. Wen YH et al (2016) A Bayesian approach to identifying new risk factors for dementia: a nationwide population-based study. Medicine 95PubMedPubMedCentralCrossRefGoogle Scholar
  431. West RK et al (2015) Shorter adult height is associated with poorer cognitive performande in elderly men with type II diabetes. J Alzheimers Dis 44:927–935PubMedPubMedCentralCrossRefGoogle Scholar
  432. West GL et al (2017) Playing Super Mario 64 increases hippocampal grey matter in older adults. PLoS OneGoogle Scholar
  433. Westgarth C et al (2017) I walk my dog because it makes me happy: a qualitative stady to understand why dogs motivate walking and improved health. Int J Environ Res Public Health 14PubMedCentralCrossRefPubMedGoogle Scholar
  434. Westwood AJ et al (2017) Prolonged sleep disturbance as a marker of early neurodegeneration predicting incident dementia. NeurologyGoogle Scholar
  435. Wheeler MJ et al (2017) Sedentary behavior as a risk factor for cognitive decline? A focus on the influence of glycemic control in brain health. Alzheimers Dement 3:291–300Google Scholar
  436. Whitney DG et al (2019) Fall risk in strke survivors: effects of stroke plus dementia and reduced motor functional capacity. J Neurol Sci 401:95–100PubMedCrossRefGoogle Scholar
  437. Williamson JD et al (2019) Effect of intensive versus standard blood pressure control on probable dementia – a randomized clinical trial. JAMA 321:553–561PubMedPubMedCentralCrossRefGoogle Scholar
  438. Wimo A et al (2017) The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement 13:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  439. Xu Y et al (2016) Association between Helicobacter pylori infection and carotid atherosclerosis in patients with vascular dementia. J Neurol Sci 362:73–77PubMedCrossRefGoogle Scholar
  440. Yaffe K et al (2010) Posttraumatic stress disorder and risk of dementia among US veterans. Arch Gen Psychiatry 67:608–613PubMedPubMedCentralCrossRefGoogle Scholar
  441. Yaffe K et al (2017) Olfaction and dementia in a biracial cohort of older adults. Neurology 88:456–462PubMedPubMedCentralCrossRefGoogle Scholar
  442. Yang CW et al (2015) Exposure to general anesthesia and the risk of dementia. J Pain Res 16:711–718Google Scholar
  443. Yang FC et al (2016) Increased risk of dementia in patients with tension-type headache: a nationwide retrospective population-based cohort study. PLoS One.  https://doi.org/10.1371/journal.pone.0156097PubMedPubMedCentralCrossRefGoogle Scholar
  444. Yarchoan M et al (2017) Association of cancer history with Alzheimer’s disease dementia and neuropathology. J Alzheimers Dis 56:699–706PubMedPubMedCentralCrossRefGoogle Scholar
  445. Yeung CM et al (2014) Is bilingualism associated with a lower risk of dementia in community-living older adults? Cross-sectional and prospective analyses. Alzheimer Dis Assoc Disord 28:326–332PubMedCrossRefGoogle Scholar
  446. Ylilauri MP et al (2017) Association of dietary cholesterol and egg intakes with the risk of incident dementia of Alzheimer disease: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr 105:476–484PubMedCrossRefGoogle Scholar
  447. Zahodne LB et al (2014) Bilingualism does not alter cognitive decline or dementia risk among Spanish-speaking immigrants. Neuropsychology 28:238–246PubMedCrossRefGoogle Scholar
  448. Zhong G et al (2015) Association between benzodiazepine use and dementia: a meta-analysis. PLoS One 10PubMedPubMedCentralCrossRefGoogle Scholar
  449. Zhong BL et al (2016) Effects of transient versus chronic loneliness on cognitive function in older adults: findings from the Chinese longitudinal healthy longevity survey. Am J Geriatr Psychiatry 24:389–398PubMedPubMedCentralCrossRefGoogle Scholar
  450. Zhu Y et al (2018) Effects of a specially designed areobic dance routine on mild cognitive impairment. Clin Interv Aging 13:1691–1700PubMedPubMedCentralCrossRefGoogle Scholar
  451. Zijlema WL et al (2019) Dog ownership, the natural outdoor environment and health: a cross-sectional study. BMJ Open 9PubMedPubMedCentralCrossRefGoogle Scholar
  452. Zisapel N (2018) New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol 175:3190–3199PubMedPubMedCentralCrossRefGoogle Scholar
  453. Zotcheva E et al (2018a) Leisure-time physical activity is associated with reduced risk of dementia-related mortality in adults with and without psychological distress: the cohort of Norway. Front Aging Neurosci 10:151PubMedPubMedCentralCrossRefGoogle Scholar
  454. Zotcheva E et al (2018b) Midlife physical activity, psychological distress, and dementia risk: the HUNT study. J Alzheimers Dis 66:825–833PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.Klinik für Psychiatrie und PsychotherapieTechnische Universität MünchenMünchenDeutschland
  2. 2.Abteilung Neurologie HarlachingKlinikum MünchenMünchenDeutschland

Personalised recommendations