Advertisement

Kryokonservierung

  • Jürgen Liebermann
Living reference work entry
Part of the Springer Reference Medizin book series (SRM)

Zusammenfassung

Die Kryokonservierung ist ein wesentlicher Baustein heutiger klinischer Infertilitätsbehandlung. Hierbei findet insbesondere die Vitrifikation eine weitverbreitete routinemäßige Anwendung. Ihre Etablierung erlaubt heute eine Maximierung der Wahrscheinlickeit einer Konzeption eines jeden einzelnen IVF-Zyklus durch die Kryokonservierung von nicht transferrierten Embryonen. Dies führt zu einer maximalen Nutzung aller gewonnenen Eizellen und erzeugten Embryonen. Darüber hinaus erlaubt die Technologie der Vitrifikation die Möglichkeit, einen frischen Embryotransfer, wie in Fällen von nicht optimaler uterinärer Vorbereitung, Fertilitätskonservierung, Präimplantationsdiagnose oder Notfällen wie Problemen in der Spermagewinnung, abzusagen. In diesem Kapitel wird die Anwendung der Vitrifikation von Eizellen bis hin zur Blastozyste beschrieben. Die vorgestellten Resultate unterstreichen einmal mehr die Robustheit der Vitrifikation für die Krykonservierung von menschlichen Gameten und Embryonen.

Literatur

  1. Al-Hasani S, Ozmen B, Koutlaki N, Schoepper B, Diedrich K, Schultze-Mosgau A (2007) Three years of routine vitrification of human zygotes: is it still fair to advocate slow-rate freezing? Reprod Biomed Online 14:288–293CrossRefPubMedGoogle Scholar
  2. Ali J, Shelton JN (1993) Vitrification of preimplantation stages of mouse embryos. J Reprod Fertil 98:459–465CrossRefPubMedGoogle Scholar
  3. Ata B, Chian RC, Tan SL (2010) Cryopreservation of oocytes and embryos for fertility preservation for female cancer patients. Best Pract Res Clin Obstet Gynaecol 24:101–212CrossRefPubMedGoogle Scholar
  4. Balaban B, Urman B, Ata B, Isiklar A, Larman MG, Hamilton R, Gardner DK (2008) A randomized controlled study of human Day 3 embryo cryopreservation by slow freezing or vitrification: vitrification is associated with higher survival, metabolism and blastocyst formation. Hum Reprod 23:1976–1982CrossRefPubMedGoogle Scholar
  5. Bianchi V, Coticchio G, Fava L, Flamigni C, Borini A (2005) Meiotic spindle imaging in human oocytes frozen with a slow freezing procedure involving high sucrose concentration. Hum Reprod 20:1078–1083CrossRefPubMedGoogle Scholar
  6. Bianchi V, Coticchio G, Distratis V, Di Giusto N, Flamigni C, Borini A (2007) Differential sucrose concentration during dehydration (0,2 mol/l) and rehydration (0,3 mol/l) increases the implantation rate of frozen human oocytes. Reprod Biomed Online 14:64–71CrossRefPubMedGoogle Scholar
  7. Bielanski A, Nadin-Davis S, Sapp T, Lutze-Wallace C (2000) Viral contamination of embryos cryopreserved in liquid nitrogen. Cryobiology 40:110–116CrossRefPubMedGoogle Scholar
  8. Bielanski A, Bergeron H, Lau PC, Devenish J (2003) Microbial contamination of embryos and semen during long term banking in liquid nitrogen. Cryobiology 46:146–152CrossRefPubMedGoogle Scholar
  9. Boldt J, Cline D, McLaughlin D (2003) Human oocyte cryopreservation as an adjunct to IVF-embryo transfer cycles. Hum Reprod 18:1250–1255CrossRefPubMedGoogle Scholar
  10. Boldt J, Tidswell N, Sayers A, Kilani R, Cline D (2006) Human oocyte cryopreservation: 5-year experience with a sodium-depleted slow freezing method. Reprod Biomed Online 13:96–100CrossRefPubMedGoogle Scholar
  11. Braude P, Bolton V, Moore S (1988) Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332:459–461CrossRefPubMedGoogle Scholar
  12. Chen C (1986) Pregnancy after human oocyte cryopreservation. Lancet 1:884–886CrossRefPubMedGoogle Scholar
  13. Chen CK, Wang CW, Tsai WJ, Hsieh LL, Wang HS, Soong YK (2004) Evaluation of meiotic spindles in thawed oocytes after vitrification using polarized light microscopy. Fertil Steril 82:666–672CrossRefPubMedGoogle Scholar
  14. Chian RC, Gilbert L, Huang JY, Demirtas E, Holzer H, Benjamin A, Buckett WM, Tulandi T, Tan SL (2009) Live birth after vitrification of in-vitro matured human oocytes. Fertil Steril 91:372–376CrossRefPubMedGoogle Scholar
  15. Cobo A, Rubio C, Gerli S, Ruiz A, Pellicer A, Remohi J (2001) Use of fluorescence in situ hybridisation to assess the chromosomal status of embryos obtained from cryopreserved oocytes. Fertil Steril 75:354–360CrossRefPubMedGoogle Scholar
  16. Cobo A, Domingo J, Pérez S, Crespo J, Remohí J, Pellicer A (2008) Vitrification: an effective new approach to oocyte banking and preserving fertility in cancer patients. Clin Transl Oncol 10:268–273CrossRefPubMedGoogle Scholar
  17. Conaghan J, Vaccari S (2015) Development and hatching of human blastocysts after vitrification and warming, Chapter 20. In: Tucker MJ, Liebermann J (Hrsg) Vitrification in assisted reproduction, 2. Aufl. Informa Healthcare, London, S 175–184Google Scholar
  18. De Santis L, Cino I, Rabellotti E, Papaleo E, Calzi F, Fusi FM, Brigante C, Ferrari A (2007) Oocyte cryopreservation: clinical outcome of slow-cooling protocols differing in sucrose concentration. Reprod Biomed Online 14:57–63CrossRefPubMedGoogle Scholar
  19. Desai N, Blackmon H, Szeptycki J, Goldfarb J (2007) Cryoloop vitrification of human day 3 cleavage-stage embryos: post-vitrification development, pregnancy outcomes and live births. Reprod Biomed Online 14:208–213CrossRefPubMedGoogle Scholar
  20. El-Danasouri HA, Selman I (2001) Successful pregnancies and deliveries after a simple vitrification protocol for day 3 human embryos. Fertil Steril 76:400–402CrossRefPubMedGoogle Scholar
  21. Fabbri R, Porcu E, Marsella T, Rocchetta G, Venturoli S, Flamigni C (2001) Human oocyte cryopreservation: new perspectives regarding oocyte survival. Hum Reprod 16:411–416CrossRefPubMedGoogle Scholar
  22. Fahy (1986) Vitrification: a new approach to organ cryopreservation. In: Merryman HT (Hrsg) Transplantation: approaches to graft rejection. Alan R Liss, New York, S 305–335Google Scholar
  23. Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:407–426CrossRefPubMedGoogle Scholar
  24. Fountain D, Ralston M, Higgins N, Gorlin JB, Uhl L, Wheeler C, Antin JH, Churchill WH, Benjamin RJ (1997) Liquid nitrogen freezer: a potential source of microbial contamination of hematopoietic stem cell components. Transfusion 37:585–591CrossRefPubMedGoogle Scholar
  25. Gardner DK, Lane M, Stevens J, Schoolcraft WB (2003) Changing the start temperature and cooling rate in a slow-freezing protocol increases human blastocyst viability. Fertil Steril 79:407–410CrossRefPubMedGoogle Scholar
  26. Gook DA, Edgar DH (1999) Cryopreservation of the human female gamete: current and future issues. Hum Reprod 14:2938–2940CrossRefPubMedGoogle Scholar
  27. Gook DA, Edgar DH (2007) Human oocyte cryopreservation. Hum Reprod Update 13:591–605CrossRefPubMedGoogle Scholar
  28. Gook DA, Schiewe MC, Osborn SM, Asch RH, Jansen RP, Johnston WI (1995) Intracytoplasmic sperm injection and embryo development of human oocytes cryopreserved using 1,2-propanediol. Hum Reprod 10:2637–2641CrossRefPubMedGoogle Scholar
  29. Hiraoka K, Hiraoka K, Kinutani M, Kinutani K (2004) Blastocoele collapse by micropipetting prior to vitrification gives excellent survival and pregnancy outcomes for human day 5 and 6 expanded blastocysts. Hum Reprod 19:2884–2888CrossRefPubMedGoogle Scholar
  30. Hur YS, Park JH, Ryu EK, Yoon HJ, Yoon SH, Hur CY, Lee WD (2011) Lim JH Effect of artificial shrinkage on clinical outcome in fresh blastocyst transfer cycle. Clin Exp Reprod Med 38:87–92CrossRefPubMedPubMedCentralGoogle Scholar
  31. Iwayama H, Hochi S, Yamashita M (2011) In vitro and in vivo viability of human blastocysts collapsed by laser pulse or osmotic shocks prior to vitrification. J Assist Reprod Genet 28:355–361CrossRefPubMedGoogle Scholar
  32. Jelinkova L, Selman HA, Arav A, Strehler E, Reeka N, Sterzik K (2002) Twin pregnancy after vitrification of 2-pronuclei human embryos. Fertil Steril 77:412–414CrossRefPubMedGoogle Scholar
  33. Jericho H, Wilton L, Gook DA, Edgar DH (2003) A modified cryopreservation method increases the survival of human biopsied cleavage stage embryos. Hum Reprod 18:568–571CrossRefPubMedGoogle Scholar
  34. Jeruss JS, Woodruff TK (2009) Preservation of fertility in patients with cancer. N Engl J Med 360:902–911CrossRefPubMedPubMedCentralGoogle Scholar
  35. Karlsson JOM, Eroglu A, Toth TL, Cravalho EG, Toner M (1996) Fertilization and development of mouse oocytes cryopreserved using a theoretically optimized protocol. Hum Reprod 11:1296–1305CrossRefPubMedGoogle Scholar
  36. Kuleshova L, Gianaroli L, Magli C, Ferraretti A, Trounson A (1999) Birth following vitrification of a small number of human oocytes: case report. Hum Reprod 14:3077–3079CrossRefPubMedGoogle Scholar
  37. Kuwayama M (2007) Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology 67:73–80CrossRefPubMedGoogle Scholar
  38. Kuwayama M, Vajta G, Ieda S, Kato O (2005) Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reprod Biomed Online 11:608–614CrossRefPubMedGoogle Scholar
  39. Larman MG, Sheehan CB (2006) Gardner DK Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction 131:53–61CrossRefPubMedGoogle Scholar
  40. Larman MG, Minasi MG, Rienzi L, Gardner DK (2007) Maintenance of the meiotic spindle during vitrification in human and mouse oocytes. Reprod Biomed Online 15:692–700CrossRefPubMedGoogle Scholar
  41. Leibo SP (1980) Water permeability and its activation energy of fertilized and unfertilized mouse ova. J Membr Biol 53:179–188CrossRefPubMedGoogle Scholar
  42. Letur-Könirsch H, Collin G, Sifer C, Devaux A, Kuttenn F, Madelenat P, Brun-Vezinet F, Feldmann G, Benifla JL (2003) Safety of cryopreservation straws for human gametes or embryos: a study with human immunodeficiency virus-1 under cryopreservation conditions. Hum Reprod 18:140–144CrossRefPubMedGoogle Scholar
  43. Li YB, Zhou CG, Yang GF, Wang O, Li Y, Chen ZJ, Yang HJ, Zhong WX, Ma SY, Li M (2007) Comparison of vitrification and slow-freezing of human day 3 cleavage stage embryos: post-vitrification development and pregnancy outcomes. Zhonghua Fu Chan Ke Za Zhi 42:753–755PubMedGoogle Scholar
  44. Liebermann J (2009) Vitrification of human blastocysts: an update. Reprod Biomed Online 19(Suppl 4):4328PubMedGoogle Scholar
  45. Liebermann J (2011) More than six years of blastocyst vitrification – what is the verdict? US Obstet Gynecol 5:14–17Google Scholar
  46. Liebermann J (2015) Vitrification of human blastocysts: clinical realities and neonatal outcomes, Chapter 19. In: Tucker MJ, Liebermann J (Hrsg) Vitrification in assisted reproduction, 2. Aufl. Informa Healthcare, London, S 163–173Google Scholar
  47. Liebermann J, Conaghan J (2013) Artificial collapse prior blastocyst vitrification: improvement of clinical outcome. J Clin Embryol 16:1Google Scholar
  48. Liebermann J, Tucker MJ (2002) Effect of carrier system on the yield of human oocytes and embryos as assessed by survival and developmental potential after vitrification. Reproduction 124:483–489CrossRefPubMedGoogle Scholar
  49. Liebermann J, Tucker MJ (2004) Vitrifying and warming of human oocytes, embryos, and blastocysts: vitrification procedures as an alternative to conventional cryopreservation methods. Mol Biol 254:345–364Google Scholar
  50. Liebermann J, Tucker MJ (2006) Comparison of vitrification versus conventional cryopreservation of day 5 and day 6 blastocysts during clinical application. Fertil Steril 86:20–26CrossRefPubMedGoogle Scholar
  51. Liebermann J, Nawroth F, Isachenko V, Isachenko E, Rahimi G, Tucker MJ (2002a) Potential importance of vitrification in reproductive medicine. Biol Reprod 67:1671–1680CrossRefPubMedGoogle Scholar
  52. Liebermann J, Tucker MJ, Graham JR, Han T, Davis A, Levy MJ (2002b) Blastocyst development after vitrification of multipronucleate zygotes using the flexipet denuding pipette (FDP). Reprod Biomed Online 4:146–150CrossRefPubMedGoogle Scholar
  53. Liebermann J, Dietl J, Vanderzwalmen P, Tucker MJ (2003) Recent developments in human oocyte, embryo and blastocyst vitrification: where are we now? Reprod Biomed Online 7:623–633CrossRefPubMedGoogle Scholar
  54. Loutradi KE, Kolibianakis EM, Venetis CA, Papanikolaou EG, Pados G, Bontis I, Tarlatzis BC (2008) Cryopreservation of human embryos by vitrification or slow freezing: a systematic review and meta-analysis. Fertil Steril 90:186–193CrossRefPubMedGoogle Scholar
  55. Mazur P (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 47:347–369CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mazur P (1990) Equilibrium, quasi-equilibrium, and non-equilibrium freezing of mammalian embryos. Cell Biophys 17:53–92CrossRefPubMedGoogle Scholar
  57. Mazur P, Schneider U (1986) Osmotic response of preimplantation mouse and bovine embryos and their cryobiological implications. Cell Biophys 8:259–285CrossRefPubMedGoogle Scholar
  58. Mazur P, Seki S (2011) Survival of mouse oocytes after being cooled in a vitrification solution to −196 °C at 95° to 70.000 °C/min and warmed at 610° to 118.000 °C/min: a new paradigm for cryopreservation by vitrification. Cryobiology 62:1–7CrossRefPubMedGoogle Scholar
  59. Mazur P, Schneider U, Mahowald AP (1992) Characteristics and kinetics of subzero chilling injury in Drosophila embryos. Cryobiology 29:39–68CrossRefPubMedGoogle Scholar
  60. Mukaida T, Wada S, Takahashi K, Pedro PB, An TZ, Kasai M (1998) Vitrification of human embryos based on the assessment of suitable conditions for 8-cell mouse embryos. Hum Reprod 13:2874–2879CrossRefPubMedGoogle Scholar
  61. Mukaida T, Nakamura S, Tomiyama T, Wada S, Kasai M, Takahashi K (2001) Successful birth after transfer of vitrified human blastocysts with use of a Cryoloop containerless technique. Fertil Steril 76:618–623CrossRefPubMedGoogle Scholar
  62. Mukaida T, Takahashi K, Kasai M (2003a) Blastocyst cryopreservation: ultrarapid vitrification using Cryoloop technique. Reprod Biomed Online 6:221–215CrossRefPubMedGoogle Scholar
  63. Mukaida T, Nakamura S, Tomiyama T, Wada S, Oka C, Kasai M, Takahashi K (2003b) Vitrification of human blastocysts using Cryoloops: clinical outcome of 223 cycles. Hum Reprod 18:384–3891CrossRefPubMedGoogle Scholar
  64. Mukaida T, Oka C, Goto T, Takahashi K (2006) Artificial shrinkage of blastocoeles using either a microneedle or a laser pulse prior to the cooling steps of vitrification improves survival rate and pregnancy outcome of vitrified human blastocysts. Hum Reprod 21:3246–3252CrossRefPubMedGoogle Scholar
  65. Noyes N, Porcu E, Borini A (2009) Over 900 oocyte cryopreservation babies born with no apparent increase in congenital anomalies. Reprod Biomed Online 18:769–776CrossRefPubMedGoogle Scholar
  66. Park SP, Kim EY, Oh JH, Nam HK, Lee KS, Park SY, Park EM, Yoon SH, Chung KS, Lim JH (2000) Ultra-rapid freezing of human multipronuclear zygotes using electron microscope grids. Hum Reprod 15:1787–1790CrossRefPubMedGoogle Scholar
  67. Pinborg A, Henningsen AA, Loft A et al (2014) Large baby syndrome in singleton born after frozen embryo transfers (FET): is it due the maternal factors or the cryotechnique? Hum Reprod 29:618–627CrossRefPubMedGoogle Scholar
  68. Porcu E, Fabbri R, Seracchioli R, Ciotti PM, Magrini O, Flamigni C (1997) Birth of a healthy female after intracytoplasmic sperm injection of cryopreserved human oocytes. Fertil Steril 68:724–726CrossRefPubMedGoogle Scholar
  69. Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature 313:573–575CrossRefPubMedGoogle Scholar
  70. Rama Raju GA, Haranath GB, Krishna KM, Prakash GJ, Madan K (2005) Vitrification of human 8-cell embryos, a modified protocol for better pregnancy rates. Reprod Biomed Online 11:434–437CrossRefPubMedGoogle Scholar
  71. Rama Raju GA, Jaya Prakash G, Murali Krishna K, Madan K (2009) Neonatal outcome after vitrified day 3 embryo transfers: a preliminary study. Fertil Steril 92:143–148CrossRefPubMedGoogle Scholar
  72. Seki S, Mazur P (2009) The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology 59:75–82CrossRefPubMedPubMedCentralGoogle Scholar
  73. Selman HA, El-Danasouri I (2002) Pregnancies derived from vitrified human zygotes. Fertil Steril 77:422–423CrossRefPubMedGoogle Scholar
  74. Son WY, Yoon SH, Yoon HJ, Lee SM, Lim JH (2003) Pregnancy outcome following transfer of human blastocysts vitrified on electron microscopy grids after induced collapse of the blastocoele. Hum Reprod 18:137–139CrossRefPubMedGoogle Scholar
  75. Surrey E, Keller J, Stevens J, Gustofson R, Minjarez D, Schoolcraft W (2010) Freeze-all: enhanced outcomes with cryopreservation at the blastocyst stage versus pronuclear stage using slow-freeze techniques. Reprod Biomed Online 21:411–417CrossRefPubMedGoogle Scholar
  76. Takahashi K, Mukaida T, Goto T, Oka C (2005) Perinatal outcome of blastocyst transfer with vitrification using cryoloop: a 4-year follow-up study. Fertil Steril 84:88–92CrossRefPubMedGoogle Scholar
  77. Tedder RS, Zuckerman MA, Goldstone AH, Hawkins AE, Fielding A, Briggs EM, Irwin D, Blair S, Gorman AM, Patterson KG et al (1995) Hepatitis-B transmission from contaminated cryopreservation tank. Lancet 346:137–140CrossRefPubMedGoogle Scholar
  78. Trapphoff T (2015) Vitrification of oocytes: imprinting and disturbance in spindle formation and chromosome segregation, Chapter 12. In: Tucker MJ, Liebermann J (Hrsg) Vitrification in assisted reproduction, 2. Aufl. Informa Healthcare, London, S 105–116Google Scholar
  79. Trapphoff T, El Hajj N, Zechner U, Haaf T, Eichenlaub-Ritter U (2010) DNA integrity, growth pattern, spindle formation, chromosomal constitution and imprinting patterns of mouse oocytes from vitrified pre-antral follicles. Hum Reprod 25:3025–3042CrossRefPubMedGoogle Scholar
  80. Trounson A, Mohr L (1983) Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature 305:707–709CrossRefPubMedGoogle Scholar
  81. Tucker MJ (2003) Cryopreservation protocols. In: Patrizio P, Guelman V, Tucker MJ (Hrsg) Color atlas of human assisted reproduction: laboratory and clinical insights. Lippincott Williams & Wilkins, Philadelphia, S 257–276Google Scholar
  82. Tucker M, Wright G, Morton P, Shanguo L, Massey J, Kort H (1996) Preliminary experience with human oocyte cryopreservation using 1,2-propanediol and sucrose. Hum Reprod 11:1513–1515CrossRefPubMedGoogle Scholar
  83. Vajta G, Holm P, Kuwayama M, Booth PJ, Jacobsen H, Greve T, Callesen H (1998) Open pulled straws (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev 51:53–85CrossRefPubMedGoogle Scholar
  84. Vajta G, Kuwayama M, Vanderzwalmen P (2007) Disadvantages and benefits of vitrification. In: Tucker MJ, Liebermann J (Hrsg) Vitrification in assisted reproduction A user’s manual and troubleshooting guide. Informa UK, London, S 33–44CrossRefGoogle Scholar
  85. Van den Abbeel E, Camus M, Verheyen G, Van Waesberghe L, Devroey P, Van Steirteghem A (2005) Slow controlled-rate freezing of sequentially cultured human blastocysts: an evaluation of two freezing strategies. Hum Reprod 10:2939–2945CrossRefGoogle Scholar
  86. Vanderzwalmen P, Bertin G, Ch D, Standaert V, van Roosendaal E, Vandervorst M, Bollen N, Zech H, Mukaida T, Takahashi K, Schoysman R (2002) Births after vitrification at morula and blastocyst stages: effect of artificial reduction of the blastocoelic cavity before vitrification. Hum Reprod 17:744–451CrossRefGoogle Scholar
  87. Vanderzwalmen P, Bertin G, Ch D, Standaert V, Bollen N, van Roosendaal E, Vandervorst M, Schoysman R, Zech N (2003) Vitrification of human blastocysts with the hemistraw carrier: application of assisted hatching after thawing. Hum Reprod 18:1501–1511CrossRefGoogle Scholar
  88. Vanderzwalmen P, Connan D, Grobet L et al (2013) Lower intracellular concentration of cryoprotectants aftervitrification than after slow freezing despite exposure to higher concentration of cryoprotectant solutions. Hum Reprod 28:2101–2110CrossRefPubMedGoogle Scholar
  89. Walker DL, Tummon IS, Hammitt DG, Session DR, Dumesic DA, Thornhill AR (2004) Vitrification versus programmable rate freezing of late stage murine embryos: a randomized comparison prior to application in clinical IVF. Reprod Biomed Online 8:558–568CrossRefPubMedGoogle Scholar
  90. Wennerholm UB, Soderstrom-Anttila V, Bergh C, Aittomäki K, Hazekamp J, Nygren KG, Selbing A, Loft A (2009) Children born after cryopreservation of embryos or oocytes: a systematic review of outcome data. Hum Reprod 24:2158–2172CrossRefPubMedGoogle Scholar
  91. Whittingham DG (1977) Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at −196 °C. J Reprod Fertil 49:89–94CrossRefPubMedGoogle Scholar
  92. Whittingham DG, Leibo SP, Mazur P (1972) Survival of mouse embryos frozen to −196° and −289 °C. Science 178:411–414CrossRefPubMedGoogle Scholar
  93. Yoon TK, Chung HM, Lim JM, Han SY, Ko JJ, Cha KY (2000) Pregnancy and delivery of healthy infants developed from vitrified oocytes in a stimulated in vitro fertilization-embryo transfer program [letter]. Fertil Steril 74:180–181CrossRefPubMedGoogle Scholar
  94. Youssry M, Ozmen B, Zohni K, Diedrich K, Al-Hasani S (2008) Current aspects of blastocyst cryopreservation. Reprod Biomed Online 16:311–320CrossRefPubMedGoogle Scholar
  95. Zeilmaker GH, Alberda AT, van Gent I, Rijkmans CM, Drogendijk AC (1984) Two pregnancies following transfer of intact frozen-thawed embryos. Fertil Steril 42:293–296CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Fertility Centers of IllinoisChicagoVereinigte Staaten
  2. 2.Oak ParkVereinigte Staaten

Personalised recommendations