Encyclopedia of Continuum Mechanics

Living Edition
| Editors: Holm Altenbach, Andreas Öchsner

Tensor Random Fields in Continuum Mechanics

Living reference work entry
DOI: https://doi.org/10.1007/978-3-662-53605-6_71-1

Synonyms

Definitions

Let \((\varOmega ,\mathfrak {F},\mathsf {P})\)

This is a preview of subscription content, log in to check access

Notes

Acknowledgements

The work of the second author was supported by the National Science Foundation under Grant Number (Grant CMMI-1462749). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author (MO-S) and do not necessarily reflect the views of the National Science Foundation.

References

  1. Batchelor GK (1951) Note on a class of solutions of the Navier–Stokes equations representing steady rotationally-symmetric flow. Q J Mech Appl Math 4:29–41.  https://doi.org/10.1093/qjmam/4.1.29,  https://doi.org/10.1093/qjmam/4.1.29
  2. Frisch U (1995) Turbulence. The legacy of A. N. Kolmogorov. Cambridge University Press, CambridgeGoogle Scholar
  3. Guilleminot J, Soize C (2019) Non-Gaussian random fields in multiscale mechanics of heterogeneous materials. In: Encyclopedia of continuum mechanics, 1st edn. Springer, Berlin/Heidelberg, p 10Google Scholar
  4. Lomakin VA (1964) Statistical description of the stressed state of a body under deformation. Dokl Akad Nauk SSSR 155:1274–1277Google Scholar
  5. Malyarenko A, Ostoja-Starzewski M (2014a) The spectral expansion of the elasticity random field. AIP Conf Proc 1637(1):647–655. https://doi.org/10.1063/1.4904635, http://aip.scitation.org/doi/abs/10.1063/1.4904635, http://aip.scitation.org/doi/pdf/10.1063/1.4904635
  6. Malyarenko A, Ostoja-Starzewski M (2014b) Statistically isotropic tensor random fields: correlation structures. Math Mech Complex Syst 2(2):209–231.  https://doi.org/10.2140/memocs.2014.2.209,  https://doi.org/10.2140/memocs.2014.2.209
  7. Malyarenko A, Ostoja-Starzewski M (2016) Spectral expansions of homogeneous and isotropic tensor-valued random fields. Z Angew Math Phys 67(3):Article 59, 20. https://doi.org/10.1007/s00033-016-0657-8, https://doi.org/10.1007/s00033-016-0657-8
  8. Monin AS, Yaglom AM (2007a) Statistical fluid mechanics: mechanics of turbulence, vol I. Dover Publications, Inc., Mineola. Translated from the 1965 Russian original, Edited and with a preface by John L. Lumley, English edition updated, augmented and revised by the authors, Reprinted from the 1971 editionGoogle Scholar
  9. Monin AS, Yaglom AM (2007b) Statistical fluid mechanics: mechanics of turbulence, vol II. Dover Publications, Inc., Mineola. Translated from the 1965 Russian original, Edited and with a preface by John L. Lumley, English edition updated, augmented and revised by the authors, Reprinted from the 1975 editionGoogle Scholar
  10. Ostoja-Starzewski M (2008) Microstructural randomness and scaling in mechanics of materials. CRC series: modern mechanics and mathematics. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  11. Ostoja-Starzewski M, Shen L, Malyarenko A (2015) Tensor random fields in conductivity and classical or microcontinuum theories. Math Mech Solids 20(4):418–432. https://doi.org/10.1177/1081286513498524, https://doi.org/10.1177/1081286513498524
  12. Ostoja-Starzewski M, Kale S, Karimi P, Malyarenko A, Raghavan B, Ranganathan S, Zhang J (2016) Scaling to RVE in random media. In: Bordas SP, Balint DS (eds) Advances in applied mechanics, vol 49. Elsevier BV, pp 111–211. https://doi.org/10.1016/bs.aams.2016.07.001
  13. Robertson HP (1940) The invariant theory of isotropic turbulence. Proc Camb Philos Soc 36:209–223MathSciNetCrossRefMATHGoogle Scholar
  14. Sena MP, Ostoja-Starzewski M, Costa L (2013) Stiffness tensor random fields through upscaling of planar random materials. Probab Eng Mech 34:131–156. https://doi.org/10.1016/j.probengmech.2013. 08.008, http://www.sciencedirect.com/science/article/ pii/S0266892013000660
  15. Shermergor T (1971) Relations between the components of the correlation functions of an elastic field. J Appl Math Mech 35(3):392–397. https://doi.org/10.1016/0021-8928(71)90007-4, http://www.sciencedirect.com/science/article/pii/0021892871900074
  16. Spencer A (1971) Part III – theory of invariants. In: Eringen AC (ed) Continuum physics. Volume 1 – mathematics. Academic Press, pp 239–353. https://doi.org/ 10.1016/B978-0-12-240801-4.50008-X, http://www. sciencedirect.com/science/article/pii/B9780122408014 50008X
  17. Taylor GI (1935) Statistical theory of turbulence. Proc R Soc Lond A Math Phys Eng Sci 151(873):421–444.  https://doi.org/10.1098/rspa.1935.0158, http://rspa.roy alsocietypublishing.org/content/151/873/421, http://rsp a.royalsocietypublishing.org/content/151/873/421.full. pdf
  18. Yaglom AM (1957) Certain types of random fields in n-dimensional space similar to stationary stochastic processes. Teor Veroyatnost i Primenen 2:292–338MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Division of Applied MathematicsMälardalen UniversityVästeråsSweden
  2. 2.Department of Mechanical Science & Engineering, Institute for Condensed Matter Theory and Beckman InstituteUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Section editors and affiliations

  • Martin Ostoja-Starzewski
    • 1
  1. 1.Department of Mechanical Science & Engineering, Institute for Condensed Matter Theory and Beckman InstituteUniversity of Illinois at Urbana–ChampaignUrbanaUSA