Skip to main content

Plane Thermoelasticity of Inhomogeneous Solids

  • Living reference work entry
  • First Online:

Synonyms

Formulation and analysis of plane elasticity and thermoelasticity problems for inhomogeneous materials; Plane-strain and plane-stress problems of the elasticity and thermoelasticity theories for inhomogeneous solids

Definitions

Plane problem:

That addresses a problem formulated under either the plane-stress or plane-strain hypothesis, which allows for representing a general three-dimensional formulation in two in-plane dimensions within a plane section of a considered elastic solid.

Elasticity, thermoelasticity:

That addresses the geometrically and physically linear theories of elasticity and thermoelasticity.

Material inhomogeneity:

That addresses the variation of material properties (elastic and thermophysical moduli) within a macro-volume of an elastic solid.

Introduction

Plane problems of the elasticity and thermoelasticity theories attract widespread attention for over a hundred years. Being derived from general three-dimensional problems by making use of either the...

This is a preview of subscription content, log in via an institution.

References

  • Airy BD (1863) On the strains in the interior of beams. Philos Trans R Soc Lond 153:49–79

    Article  Google Scholar 

  • Ambatsumyan SA (1970) Theory of anisotropic plates. Strength, stability, and vibration. Technomic, Stamfort

    Google Scholar 

  • Boley BA, Weiner JH (1960) Theory of thermal stresses. Wiley, New York

    MATH  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Dai HL, Rao YN, Dai T (2016) A review of recent researches on FGM cylindrical structures under coupled physical interactions, 2000–2015. Compos Struct 152:199–225

    Article  Google Scholar 

  • Goursat M (1898) Sur l’équation ΔΔu = 0. Bull Soc Math France 26:236–237

    MATH  Google Scholar 

  • Guo LC, Noda N (2007) Modeling method for a crack problem of functionally graded materials with arbitrary properties – piecewise-exponential model. Int J Solids Struct 44:6768–6790

    Article  Google Scholar 

  • Hashin Z (1964) Theory of mechanical behavior of heterogeneous media. Appl Mech Rev 17(1):1–9

    Google Scholar 

  • Hetnarski RB, Eslami MR (2009) Thermal stresses – advanced theory and applications. Springer, Dordrecht

    MATH  Google Scholar 

  • Hilton H (1952) Thermal stresses in bodies exhibiting temperature-dependent elastic properties. J Appl Mech 19:350–354

    Google Scholar 

  • Jha DK, Kant T, Singh RK (2013) A critical review of recent research on functionally graded plates. Compos Struct 96:883–849

    Google Scholar 

  • Kolchin GB (1971) Computation of the structural elements from elastic nonhomogeneous materials. Kartya Moldovenyasce, Kishinau [in Russian]

    Google Scholar 

  • Kolosov GV (1935) Application of complex diagrams and the theory of functions of a complex variable to the theory of elasticity. ONTI, Moscow, Leningrad

    Google Scholar 

  • Kovalenko AD (1969) Thermoelasticity: basic theory and applications. Wolters-Noordhoff Pub, Groningen

    MATH  Google Scholar 

  • Kupradze VD (1979) Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. North-Holland Publ. Co., Amsterdam

    Google Scholar 

  • Lekhnitskii SG (1968) Anisotropic plates. Gordon and Breach, New York

    Google Scholar 

  • Lekhnitskii SG (1981) Theory of elasticity of an anisotropic body. Mir Pub., Moscow

    MATH  Google Scholar 

  • Maugin GA (1993) Material inhomogeneities in elasticity. Chapman and Hall, London

    Book  Google Scholar 

  • Maxwell JC (1862) Report on a paper by George Biddel Airy on stress in beams. In: Harman PM (ed) The scientific letters and papers of James Clerk Maxwell, 1995, vol 2. Cambridge University Press, Cambridge, pp 62–69

    Google Scholar 

  • Meleshko VV (2003) Selected topics in the history of the two-dimensional biharmonic problem. Appl Mech Rev 56(1):33–85. https://doi.org/10.1115/1.1521166

    Article  Google Scholar 

  • Michlin S (1935) Le problème plan de la théorie statique d’élasticité. Publ Ints Séism 65:1–82

    Google Scholar 

  • Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG (1999) Functionally graded materials: design, processing and applications. Springer, Boston

    Book  Google Scholar 

  • Mortensen A, Suresh S (1995) Functionally graded metals and metal-ceramic composites: part 1 processing. Int Mater Rev 40(6):239–265

    Article  Google Scholar 

  • Muskhelishvili NI (1977) Some basic problems of the mathematical theory of elasticity. Noordhoff, Leyden

    Book  Google Scholar 

  • Noda N (1991) Thermal stresses in materials with temperature-dependent properties. Appl Mech Rev 44(9):383–397

    Article  Google Scholar 

  • Olszak W (1959) Non-homogeneity in elasticity and plasticity. Pergamon Press, New York

    MATH  Google Scholar 

  • Olszak W, Rychlewski J, Urbanowski W (1962) Plasticity under non-homogeneous conditions. Adv Appl Mech 7:131–214

    Article  MathSciNet  Google Scholar 

  • Podstrigach YS, Lomakin VA, Kolyano YM (1984) Thermoelasticity of bodies of nonhomogeneous structure. Nauka, Moscow [in Russian]

    MATH  Google Scholar 

  • Rabin BH, Shiota I (1995) Functionally gradient materials. MRS Bull 20(1):14–18

    Article  Google Scholar 

  • Radu A (1966) Problema lui Saint–Venant pentru bare neomogene. An Şti Univ “Al. I. Cuza” Iaşi, Secţ. 1-a Mat 12:415–428

    Google Scholar 

  • Radu A (1968) Sur la déformation plane d’un corps élastique isotrope non-homogène. Bul L’Acad Polon Sci. Sér Scie Tech 16(2):91–100

    Google Scholar 

  • Ramirez R, Heyliger PR, Pan E (2006) Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach. Compos B Eng 37(1):10–20

    Article  Google Scholar 

  • Southwell RV (1938) Castigliano’s principle of minimum strain-energy, and the conditions of compatibility for strain. In: Timoshenko S (ed) 60th anniversary volume. The Macmillan Company, New York, pp 211–217

    Google Scholar 

  • Suresh S, Mortensen A (1997) Functionally graded metals and metal-ceramic composites: part 2 thermomechanical behaviour. Int Mat Rev 42(3):85–116

    Article  Google Scholar 

  • Swaminathan K, Sangeetha DM (2017) Thermal analysis of FGM plates – a critical review of various modeling techniques and solution methods. Compos Struct 160:43–60

    Article  Google Scholar 

  • Swaminathan K, Naveenkumar DT, Zenkour AM, Carrera E (2017) Stress, vibration and buckling analyses of FGM plates – a state-of-the-art review. Compos Struct 120:10–31

    Article  Google Scholar 

  • Tanigawa Y (1995) Some basic thermoelastic problems for nonhomogeneous structural materials. Appl Mech Rev 48(6):287–300

    Article  Google Scholar 

  • Teodorescu PP (2013) Treatise on classical elasticity. Theory and related problems. Springer, Dordrecht

    Book  Google Scholar 

  • Thai HT, Kim SE (2015) A review of theories for the modeling and analysis of functionally graded plates and shells. Compos Struct 128:70–86

    Article  Google Scholar 

  • Timoshenko SP (1953) History of strength of materials: with a brief account of the history of theory of elasticity and theory of structures. McGraw-Hill, New York

    MATH  Google Scholar 

  • Timoshenko SP, Goodier JN (1951) Theory of elasticity. McGraw-Hill Book Co., Inc., New York

    MATH  Google Scholar 

  • Tokovyy YV (2014) Direct integration method. In: Hetnarski RB (ed) Encyclopedia of thermal stresses, vol 2. Springer, Dordrecht, pp 951–960

    Chapter  Google Scholar 

  • Tokovyy YV, Ma CC (2019, accepted) Elastic analysis of inhomogeneous solids: history and development in brief. J Mech, Springer, Dordrecht

    Google Scholar 

  • Tokovyy YV, Kalynyak BM, Ma CC (2014) Nonhomogeneous solids: integral equations approach. In: Hetnarski RB (ed) Encyclopedia of thermal stresses, vol 7, pp 3350–3356

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tokovyy, Y. (2019). Plane Thermoelasticity of Inhomogeneous Solids. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_361-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_361-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics