Encyclopedia of Continuum Mechanics

Living Edition
| Editors: Holm Altenbach, Andreas Öchsner

Variational Methods for Continuum Models of Granular Materials

  • Anil MisraEmail author
  • Luca Placidi
  • Emilio Turco
Living reference work entry
DOI: https://doi.org/10.1007/978-3-662-53605-6_343-1



Continuum models of granular materials aim to describe their behavior in average sense while exploiting the paradigm of continuum mechanics. For granular materials, however, success of these continuum models is predicated upon how they treat grain interactions and grain kinematics within the formulation.

Continuum Models of Granular Materials

Continuum approaches can be more efficient and desirable for granular mechanics problems that require a macro-scale description involving a large number of grains (>106grains) with varying sizes and bulk and surface characteristics packed in a disordered state. In these cases, an average behavior is sufficient, and it is not necessary to obtain the trajectory of each grain as well as the spatial distributions of deformation energies at the grain-scales. For such problems, the discrete approach may be constrained, not only by its...

This is a preview of subscription content, log in to check access.


  1. Chang CS, Gao J (1995) 2nd-Gradient constitutive theory for granular material with random packing structure. Int J Solids Struct 32:2279–2293CrossRefGoogle Scholar
  2. Chang C, Gao J (1996) Kinematic and static hypotheses for constitutive modelling of granulates considering particle rotation. Acta Mech 115:213–229CrossRefGoogle Scholar
  3. Chang CS, Liao CL (1994) Estimates of elastic modulus for media of randomly packed granules. Appl Mech Rev 47:197–206CrossRefGoogle Scholar
  4. Chang CS, Misra A (1989) Theoretical and experimental-study of regular packings of granules. J Eng Mech ASCE 115:704–720CrossRefGoogle Scholar
  5. Chang CS, Misra A (1990) Packing structure and mechanical-properties of granulates. J Eng Mech ASCE 116:1077–1093CrossRefGoogle Scholar
  6. Chang C, Matsushima T, Lee X (2003) Heterogeneous strain and bonded granular structure change in triaxial specimen studied by computer tomography. J Eng Mech 129:1295–1307CrossRefGoogle Scholar
  7. Clausius R (1870) XVI. On a mechanical theorem applicable to heat. Lond Edinb Dublin Philos Mag J Sci 40:122–127CrossRefGoogle Scholar
  8. Cosserat E, Cosserat F (1909) Theory of deformable bodies. Scientific Library A. Hermann and Sons, PariszbMATHGoogle Scholar
  9. dell’Isola F, Maier G, Perego U, Andreaus U, Esposito R, Forest S (2014) The complete works of Gabrio Piola: volume I commented English translation – English and Italian edition. Springer, Cham, SwitzerlandGoogle Scholar
  10. Digby PJ (1981) The effective elastic moduli of porous granular rocks. J Appl Mech 48:803–808CrossRefGoogle Scholar
  11. Duffy J, Mindlin RD (1957) Stress-strain relations and vibrations of a granular medium. J Appl Mech 24:585–593MathSciNetGoogle Scholar
  12. Eringen A (1999) Microcontinuum field theories I: foundations and solids. Springer, New YorkCrossRefGoogle Scholar
  13. Fleischmann J, Drugan W, Plesha M (2013) Direct micromechanics derivation and DEM confirmation of the elastic moduli of isotropic particulate materials: part II particle rotation. J Mech Phys Solids 61:1585–1599MathSciNetCrossRefGoogle Scholar
  14. Germain P (1973) Method of virtual power in continuum mechanics. 2. Microstructure. SIAM J Appl Math 25:556–575. https://doi.org/10.1137/0125053CrossRefzbMATHGoogle Scholar
  15. Goddard J (2008) From granular matter to generalized continuum. In: Mathematical models of granular matter. Springer, Dordrecht, Netherlands, pp 1–22Google Scholar
  16. Goddard JD (2014) Continuum modeling of granular media. Appl Mech Rev 66:050801CrossRefGoogle Scholar
  17. Hall SA, Bornert M, Desrues J, Pannier Y, Lenoir N, Viggiani G, Bésuelle P (2010) Discrete and continuum analysis of localised deformation in sand using X-ray [mu] CT and volumetric digital image correlation. Géotechnique 60:315CrossRefGoogle Scholar
  18. Hara G (1935) Theorie der akustischen Schwingungsausbreitung in gekornten Substanzen und experimentelle Untersuchungen an Kohlepulver. Elektr Nachr Tech 12:191–200Google Scholar
  19. Jenkins J, Koenders M (2004) The incremental response of random aggregates of identical round particles. Eur Phys J E 13:113–123CrossRefGoogle Scholar
  20. Jia H, Misra A, Poorsolhjouy P, Liu C (2017) Optimal structural topology of materials with micro-scale tension-compression asymmetry simulated using granular micromechanics. Mater Des 115:422–432. https://doi.org/10.1016/j.matdes.2016.11.059CrossRefGoogle Scholar
  21. Kruyt N, Rothenburg L (2004) Kinematic and static assumptions for homogenization in micromechanics of granular materials. Mech Mater 36:1157–1173CrossRefGoogle Scholar
  22. Liao CL, Chang TP, Young DH, Chang CS (1997) Stress-strain relationship for granular materials based on the hypothesis of best fit. Int J Solids Struct 34:4087–4100. https://doi.org/10.1016/S0020-7683(97)00015-2CrossRefzbMATHGoogle Scholar
  23. Magoariec H, Danescu A, Cambou B (2008) Nonlocal orientational distribution of contact forces in granular samples containing elongated particles. Acta Geotech 3:49–60CrossRefGoogle Scholar
  24. Malvern LE (1969) Introduction to the mechanics of a continuous medium. Volume Monograph, Engle Cliffs, NJGoogle Scholar
  25. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78MathSciNetCrossRefGoogle Scholar
  26. Misra A (1998) Particle kinematics in sheared rod assemblies. In: Physics of dry granular media. Berlin, Springer, pp 261–266CrossRefGoogle Scholar
  27. Misra A (2002) Experimental micromechanics of rod assemblies. Paper presented at the 15th ASCE engineering mechanics conference, New YorkGoogle Scholar
  28. Misra A, Chang CS (1993) Effective elastic moduli of heterogeneous granular solids. Int J Solids Struct 30:2547–2566CrossRefGoogle Scholar
  29. Misra A, Jiang H (1997) Measured kinematic fields in the biaxial shear of granular materials. Comput Geotech 20:267–285. https://doi.org/10.1016/S0266-352x(97)00006-2CrossRefGoogle Scholar
  30. Misra A, Poorsolhjouy P (2015a) Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math Mech Solids. https://doi.org/10.1177/1081286515576821
  31. Misra A, Poorsolhjouy P (2015b) Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math Mech Complex Syst 3:285–308MathSciNetCrossRefGoogle Scholar
  32. Misra A, Poorsolhjouy P (2016a) Elastic behavior of 2D grain packing modeled as micromorphic media based on granular micromechanics. J Eng Mech 143:C4016005CrossRefGoogle Scholar
  33. Misra A, Poorsolhjouy P (2016b) Granular micromechanics based micromorphic model predicts frequency band gaps. Contin Mech Thermodyn 28:215–234. https://doi.org/10.1007/s00161-015-0420-yMathSciNetCrossRefzbMATHGoogle Scholar
  34. Misra A, Poorsolhjouy P (2016c) Granular micromechanics model of anisotropic elasticity derived from Gibbs potential. Acta Mech 227:1393–1413CrossRefGoogle Scholar
  35. Misra A, Poorsolhjouy P (2017) Grain- and macro-scale kinematics for granular micromechanics based small deformation micromorphic continuum model. Mech Res Commun 81:1–6. https://doi.org/10.1016/j.mechrescom.2017.01.006CrossRefGoogle Scholar
  36. Misra A, Singh V (2014a) Nonlinear granular micromechanics model for multi-axial rate-dependent behavior. Int J Solids Struct 51:2272–2282. https://doi.org/10.1016/j.ijsolstr.2014.02.034CrossRefGoogle Scholar
  37. Misra A, Singh V (2014b) Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model. Contin Mech Thermodyn 27:787–817. https://doi.org/10.1007/s00161-014-0360-yMathSciNetCrossRefzbMATHGoogle Scholar
  38. Misra A, Yang Y (2010) Micromechanical model for cohesive materials based upon pseudo-granular structure. Int J Solids Struct 47:2970–2981. https://doi.org/10.1016/j.ijsolstr.2010.07.002CrossRefzbMATHGoogle Scholar
  39. Misra A, Singh V, Darabi M (2017) Asphalt pavement rutting simulated using granular micromechanics based rate dependent damage-plasticity model. Int J Pavement Eng. https://doi.org/10.1080/10298436.2017.1380804
  40. Nicot F, Darve F, Group R (2005) A multi-scale approach to granular materials. Mech Mater 37:980–1006Google Scholar
  41. Placidi L, Barchiesi E (2018) Energy approach to brittle fracture in strain-gradient modelling. Proc R Soc A 474:20170878MathSciNetCrossRefGoogle Scholar
  42. Placidi L, Barchiesi E, Misra A (2018a) A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math Mech Complex Syst 6:77–100MathSciNetCrossRefGoogle Scholar
  43. Placidi L, Misra A, Barchiesi E (2018b) Simulation results for damage with evolving microstructure and growing strain gradient moduli. Contin Mech Thermodyn 1–21. https://doi.org/10.1007/s00161-018-0693-z
  44. Placidi L, Misra A, Barchiesi E (2018c) Two-dimensional strain gradient damage modeling: a variational approach. Z Angew Math Phys 69:56MathSciNetCrossRefGoogle Scholar
  45. Poorsolhjouy P, Misra A (2017) Effect of intermediate principal stress and loading-path on failure of cementitious materials using granular micromechanics. Int J Solids Struct 108:139–152. https://doi.org/10.1016/j.ijsolstr.2016.12.005CrossRefGoogle Scholar
  46. Richefeu V, Combe G, Viggiani G (2012) An experimental assessment of displacement fluctuations in a 2D granular material subjected to shear. Geotech Lett 2:113–118. https://doi.org/10.1680/geolett.12.00029CrossRefGoogle Scholar
  47. Romeo M (2018) Microcontinuum approach to electromagneto-elasticity in granular materials. Mech Res Commun 91:33CrossRefGoogle Scholar
  48. Rothenburg L, Selvadurai A (1981) A micromechanical definition of the Cauchy stress tensor for particulate media. Elsevier, AmsterdamGoogle Scholar
  49. Sibille L, Froiio F (2007) A numerical photogrammetry technique for measuring microscale kinematics and fabric in Schneebeli materials. Granul Matter 9:183–193CrossRefGoogle Scholar
  50. Suiker ASJ, de Borst R, Chang CS (2001) Micro-mechanical modelling of granular material. Part 1: derivation of a second-gradient micro-polar constitutive theory. Acta Mech 149:161–180CrossRefGoogle Scholar
  51. Triantafyllidis N, Bardenhagen S (1993) On higher-order gradient continuum-theories in 1-D nonlinear elasticity – derivation from and comparison to the corresponding discrete models. J Elast 33:259–293MathSciNetCrossRefGoogle Scholar
  52. Turco E (2018) In-plane shear loading of granular membranes modeled as a Lagrangian assembly of rotating elastic particles. Mech Res Commun 92:61CrossRefGoogle Scholar
  53. Walton K (1987) The effective elastic moduli of a random packing of spheres. J Mech Phys Solids 35:213–226CrossRefGoogle Scholar
  54. Yang Y, Misra A (2012) Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int J Solids Struct 49:2500–2514. https://doi.org/10.1016/j.ijsolstr.2012.05.024CrossRefGoogle Scholar
  55. Zhao C-F, Yin Z-Y, Misra A, Hicher P-Y (2018) Thermomechanical formulation for micromechanical elasto-plasticity in granular materials. Int J Solids Struct 138:64–75CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Civil, Environmental and Architectural Engineering DepartmentThe University of KansasLawrenceUSA
  2. 2.International Research Center for the Mathematics and Mechanics of Complex SystemsUniversità degli Studi dell’AquilaL’AquilaItaly
  3. 3.International Telematic University UninettunoRomeItaly
  4. 4.Department of Architecture, Design and Urban Planning (DADU)University of SassariSassariItaly

Section editors and affiliations

  • Francesco dell’Isola
    • 1
    • 2
  1. 1.DISGUniversity of Rome La SapienzaRomeItaly
  2. 2.International Research Center M&MoCSUniversity of L’AquilaL’AquilaItaly