Encyclopedia of Continuum Mechanics

Living Edition
| Editors: Holm Altenbach, Andreas Öchsner

Germain, Paul

  • Pierre SuquetEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-662-53605-6_309-1

Paul Germain (August 28, 1920, in Saint-Malo, France; †February 26, 2009, in Châtillon, France) was a scientist in aerodynamics and continuum mechanics. He made his first important contributions in the field of hypersonic and transonic flows. He used asymptotic methods to study the structure of shock waves. His application of the method of virtual powers opened the way to the rational derivation of higher-order gradient theories in Continuum Mechanics. He is also known for his personal views on continuum thermodynamics.

Open image in new window Paul Germain (Image courtesy: Paul Germain’s family)

Family and Education

Paul Germain was born in Saint-Malo (France), a seaside city in Brittany not far from Mont-Saint-Michel. He spent his childhood in Rennes, the capital of Brittany. His father, a chemist and high school teacher most appreciated by his students, was an educated person. Unfortunately he had been gassed during World War I, and he passed away when Paul was only 9 years old....

This is a preview of subscription content, log in to check access.

References

  1. Germain P (1949) La théorie générale des mouvements coniques et ses applications à l’aérodynamique supersonique. Ph.D thesis, Sorbonne University, ParisGoogle Scholar
  2. Germain P (1954) New applications of Tricomi solutions to transonic flow. In: Proceedings of the 2nd US national congress of applied mechanics, Ann Arbor, pp 659–666Google Scholar
  3. Germain P (1955) The general theory of conical motions with applications to supersonic aerodynamics. Technical Report 1554, NACA, English translation of his thesisGoogle Scholar
  4. Germain P (1956) An expression for the Green’s function for a particular Tricomi problem. Quart Appl Math 14:113–123MathSciNetCrossRefGoogle Scholar
  5. Germain P (1962) Mécanique des Milieux Continus. Masson, PariszbMATHGoogle Scholar
  6. Germain P (1972) Shock waves: jump relations and structure. In: Yih CS (ed) Advances in applied mechanics, vol 11. Academic Press, New York, pp 132–194Google Scholar
  7. Germain P (1973a) Cours de Mécanique des Milieux Continus. Tome I: Théorie générale. Masson, ParisGoogle Scholar
  8. Germain P (1973b) La méthode des puissances virtuelles en mécanique des milieux continus. Première partie: théorie du second gradient. J de Mécanique 12:235–274zbMATHGoogle Scholar
  9. Germain P (1973c) The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J Appl Math 25:556–575CrossRefGoogle Scholar
  10. Germain P, Guiraud JP (1964) Conditions de choc et structure des ondes de choc dans un écoulement non stationnaire de fluide dissipatif. J Math Pures Appl 45:313–358zbMATHGoogle Scholar
  11. Germain P, Nguyen QS, Suquet P (1983) Continuum thermodynamics. J Appl Mech 50:1010–1020CrossRefGoogle Scholar
  12. Noll W (1997) The role of the professor. Carnegie-Mellon University. http://www.math.cmu.edu/~wn0g/RP.pdf

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Mécanique et d’AcoustiqueAix-Marseille University, CNRS, Centrale MarseilleMarseilleFrance

Section editors and affiliations

  • Holm Altenbach
    • 1
  1. 1.Fakultät für Maschinenbau, Institut für MechanikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany