Encyclopedia of Continuum Mechanics

Living Edition
| Editors: Holm Altenbach, Andreas Öchsner

Sensitivity Analysis in Structural and Multidisciplinary Problems

  • Tomasz LekszyckiEmail author
  • Fabio Di Cosmo
Living reference work entry
DOI: https://doi.org/10.1007/978-3-662-53605-6_265-1

Synonyms

Definitions

This entry is an introduction to sensitivity analysis and some applications in different topics related to continuum mechanics. Two main approaches, the direct method and the adjoint system one, are presented for both discrete and continuous design parameters. The theoretical investigation is supported by some illustrative examples in order to make more clear the analysis. Some notes on second-order sensitivity analysis are also included.

Introduction

Many continuous systems are characterized by parameters, the values of which deeply affect their resulting mechanical behaviors under different conditions. Therefore, in a smart design procedure, it is very important to fix these values in order to fit a certain desired behavior or at least to investigate what are the effects connected to these modifications. Such a study is called sensitivity analysis: One is considering some objective functions which refer...

This is a preview of subscription content, log in to check access.

References

  1. Adelman HM, Haftka RT (1986) Sensitivity analysis of discrete structural systems. AIAA J 24(5):823–832CrossRefGoogle Scholar
  2. Cardoso J, Arora J (1988) Variational method for design sensitivity analysis in nonlinear structural mechanics. AIAA J 26(5):595–603MathSciNetCrossRefGoogle Scholar
  3. Cheng G, Olhoff N (1993) Rigid body motion test against error in semi-analytical sensitivity analysis. Comput Struct 46(3):515–527CrossRefGoogle Scholar
  4. Choi K, Kim N (2006a) Structural sensitivity analysis and optimization 1: linear systems. Springer Science & Business Media, New YorkGoogle Scholar
  5. Choi K, Kim N (2006b) Structural sensitivity analysis and optimization 2: nonlinear systems and applications. Springer Science & Business Media, New YorkGoogle Scholar
  6. Christensen S, Sorokin S, Olhoff N (1998a) On analysis and optimization in structural acoustics part I: problem formulation and solution techniques. Struct Optim 16(2–3):83–95Google Scholar
  7. Christensen S, Sorokin S, Olhoff N (1998b) On analysis and optimization in structural acoustics part II: exemplifications for axisymmetric structures. Struct Optim 16(2–3):96–107Google Scholar
  8. Coelho P, Fernandes P, Rodrigues H (2011) Multiscale modeling of bone tissue with surface and permeability control. J Biomech 44(2):321–329CrossRefGoogle Scholar
  9. de Borst R (2018) Finite element methods. Springer, Berlin/Heidelberg, pp 1–8. https://doi.org/10.1007/978-3-662-53605-6_13-1 Google Scholar
  10. dell’Isola F, Di Cosmo F (2018) Lagrange multipliers in infinite-dimensional systems, Methods of. Springer, Berlin/Heidelberg, pp 1–9. https://doi.org/10.1007/978-3-662-53605-6_185-1 Google Scholar
  11. dell’Isola F, Seppecher P, Corte AD (2018) Higher gradient theories and their foundations. Springer, Berlin/Heidelberg, pp 1–10. https://doi.org/10.1007/978-3-662-53605-6_151-1 Google Scholar
  12. Dems K (1986) Sensitivity analysis in thermal problems I: variation of material parameters within a fixed domain. J Therm Stresses 9(4):303–324MathSciNetCrossRefGoogle Scholar
  13. Dems K (1987) Sensitivity analysis in thermal problems II: structure shape variation. J Therm Stresses 10(1):1–16MathSciNetCrossRefGoogle Scholar
  14. Dems K, Mroz Z (1983) Variational approach by means of adjoint systems to structural optimization and sensitivity analysis I: variation of material parameters within fixed domain. Int J Solids Struct 19(8):677–692MathSciNetCrossRefGoogle Scholar
  15. Dems K, Mroz Z (1984) Variational approach by means of adjoint systems to structural optimization and sensitivity analysis II: structure shape variation. Int J Solids Struct 20(6):527–552MathSciNetCrossRefGoogle Scholar
  16. Dems K, Mroz Z (1985) Variational approach to first-and second-order sensitivity analysis of elastic structures. Int J Numer Methods Eng 21(4):637–661MathSciNetCrossRefGoogle Scholar
  17. Dems K, Mroz Z (1987) Variational approach to sensitivity analysis in thermoelasticity. J Therm Stresses 10(4):283–306MathSciNetCrossRefGoogle Scholar
  18. Haftka R, Gürdal Z (2012) Elements of structural optimization, vol 11. Springer Science & Business Media, DordrechtzbMATHGoogle Scholar
  19. Haftka R, Mroz Z (1986) First-and second-order sensitivity analysis of linear and nonlinearstructures. AIAA J 24(7):1187–1192MathSciNetCrossRefGoogle Scholar
  20. Kaessmair S, Steinmann P (2018) Computational mechanics of generalized continua. Springer, Berlin/Heidelberg, pp 1–13. https://doi.org/10.1007/978-3-662-53605-6_111-1 Google Scholar
  21. Lekszycki T (2018) Variational methods in optimization of structures, Methods of. Springer, Berlin/Heidelberg, pp 1–9Google Scholar
  22. Mróz Z, Piekarski J (1998) Sensitivity analysis and optimal design of non-linear structures. Int J Numer Methods Eng 42(7):1231–1262MathSciNetCrossRefGoogle Scholar
  23. Pedersen P, Cheng G, Rasmussen J (1989) On accuracy problems for semi-analytical sensitivity analyses. J Struct Mech 17(3):373–384Google Scholar
  24. Smith D, Tortorelli D, Tucker III C (1998a) Analysis and sensitivity analysis for polymer injection and compression molding. Comput Methods Appl Mech Eng 167(3–4):325–344CrossRefGoogle Scholar
  25. Smith D, Tortorelli D, Tucker III C (1998b) Optimal design for polymer extrusion. Part I: sensitivity analysis for nonlinear steady-state systems. Comput Methods Appl Mech Eng 167(3–4):283–302CrossRefGoogle Scholar
  26. Smith D, Tortorelli D, Tucker III C (1998c) Optimal design for polymer extrusion. Part II: sensitivity analysis for weakly-coupled nonlinear steady-state systems. Comput Methods Appl Mech Eng 167(3–4):303–323CrossRefGoogle Scholar
  27. Tortorelli D, Michaleris P (1994) Design sensitivity analysis: overview and review. Inverse Prob Eng 1(1): 71–105CrossRefGoogle Scholar
  28. Tortorelli D, Subramani G, Lu S, Haber R (1991) Sensitivity analysis for coupled thermoelastic systems. Int J Solids Struct 27(12):1477–1497CrossRefGoogle Scholar
  29. Turco E, dell Isola F, Cazzani A, Rizzi N (2016) Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift für angewandte Mathematik und Physik 67(4):85Google Scholar
  30. Van Keulen F, Haftka R, Kim N (2005) Review of options for structural design sensitivity analysis. Part 1: linear systems. Comput Methods Appl Mech Eng 194:3213–3243CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Production EngineeringWarsaw University of TechnologyWarszawaPoland
  2. 2.International Research Center M& University of L’AquilaL’AquilaItaly

Section editors and affiliations

  • Francesco Dell’Isola
    • 1
    • 2
  1. 1.International Research Center M&MoCS, University of L’AquilaL’AquilaItaly
  2. 2.DISGUniversità di Roma “La Sapienza”RomaItaly