Skip to main content

Crashworthiness

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Continuum Mechanics
  • 139 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • 14 CFR 25 (2011) Code of federal regulations, title 14, chapter I, subchapter C, part 25 – airworthiness standards: transport category airplanes. Federal Aviation Administration (FAA). United States Department of Transportation (USDOT)

    Google Scholar 

  • 49 CFR 238 (2011) Code of federal regulations, title 49, subtitle B, chapter II, part 238 – passenger equipment safety standards. Federal Railroad Administration (FRA). United States Department of Transportation (USDOT)

    Google Scholar 

  • 49 CFR 571.208 (2011) Code of federal regulations, title 49, subtitle B, chapter V, part 571 – federal motor vehicle safety standard no. 208; Occupant crash protection. National Highway Traffic Safety Administration (NHTSA). United States Department of Transportation (USDOT)

    Google Scholar 

  • 49 CFR 571.214 (2011) Code of federal regulations, title 49, subtitle B, chapter V, part 571 – federal motor vehicle safety standard no. 214; Side impact protection. National Highway Traffic Safety Administration (NHTSA). United States Department of Transportation (USDOT)

    Google Scholar 

  • Aarts L, Commandeur J, Welsh R, Niesen S, Lerner M, Thomas P, Bos N, Davidse R (2016) Study on serious road traffic injuries in the EU. European Commission. Directorate-General for Mobility and Transport

    Google Scholar 

  • Abrate S (2005) Impact on composite structures. Cambridge University Press, Cambridge

    Google Scholar 

  • APTA PR-CS-S-034-99, Rev 2 (2006) Standard for the design and construction of passenger railroad rolling stock. American Public Transportation Association

    Google Scholar 

  • Belytschko T, Liu WK, Moran B, Elkhodary KI (2014) Nonlinear finite elements for continua and structures, 2nd edn. Wiley, Chichester

    MATH  Google Scholar 

  • Boström O, Fredriksson R, Håland Y, Jakobsson L, Krafft M, Lövsund P, Muser MH, Svensson MY (2000) Comparison of car seats in low speed rear-end impacts using the BioRID dummy and the new neck injury criterion (NIC). Accid Anal Prev 32(2):321–328

    Article  Google Scholar 

  • Chen D (2015) Crush mechanics of thin-walled tubes. CRC Press, Boca Raton

    Google Scholar 

  • Costas M, Morin D, Langseth M, Romera L, Díaz J (2016) Axial crushing of aluminum extrusions filled with PET foam and GFRP. An experimental investigation. Thin-Walled Struct 99:45–57

    Article  Google Scholar 

  • Costas M, Morin D, Langseth M, Díaz J, Romera L (2017) Static crushing of aluminium tubes filled with PET foam and a GFRP skeleton. Numerical modelling and multiobjective optimization. Int J Mech Sci 131–132:205–217

    Article  Google Scholar 

  • Costas M, Morin D, Hopperstad O, Børvik T, Langseth M (2019) A through-thickness damage regularisation scheme for shell elements subjected to severe bending and membrane deformations. J Mech Phys Solids 123:190–206

    Article  Google Scholar 

  • De Haven H (1953) Development of crash-survival design in personal, executive and agricultural aircraft. Cornell University Medical College

    Book  Google Scholar 

  • EASA CS-25 (2018) Certification specifications and acceptable means of compliance for large aeroplanes CS-25. European Aviation Safety Agency

    Google Scholar 

  • Elmarakbi A (ed) (2013) Advanced composite materials for automotive applications: structural integrity and crashworthiness. Wiley, Chichester

    Google Scholar 

  • EN 15227:2008+A1:2010 (2010) Railway applications. Crashworthiness requirements for railway vehicle bodies. European Committee for Standardization (CEN)

    Google Scholar 

  • Foster JK, Kortge JO, Wolanin MJ (1977) Hybrid III. A biomechanically-based crash test dummy. SAE Trans 86:3268–3283

    Google Scholar 

  • Gennarelli TA, Wodzin E (eds) (2008) Abbreviated injury scale 2005 – update 2008. American Association for Automotive Medicine, Barrington

    Google Scholar 

  • Gibson LJ, Ashby MF (1997) Cellular solids, structure and properties, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hanssen A, Langseth M, Hopperstad O (2000) Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. Int J Impact Eng 24(5):475–507

    Article  Google Scholar 

  • Hooputra H, Gese H, Dell H, Werner H (2004) A comprehensive failure model for crashworthiness simulation of aluminium extrusions. Int J Crashworthiness 9(5):449–464

    Article  Google Scholar 

  • Hull D (1991) A unified approach to progressive crushing of fibre-reinforced composite tubes. Combust Sci Technol 40(4):377–421

    Article  Google Scholar 

  • Jones N (2010) Energy-absorbing effectiveness factor. Int J Impact Eng 37(6):754–765

    Article  Google Scholar 

  • Jones N (2011) Structural impact, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Klinich K, Saul R, Auguste G, Backaitis S, Kleinberger M (1996) Techniques for developing child dummy protection reference values. NHTSA Docket No 74-14, Notice 97, Item 069

    Google Scholar 

  • Lau IV, Viano DC (1986) The viscous criterion. Bases and applications of an injury severity index for soft tissues. SAE Trans 95:672–691

    Google Scholar 

  • Lu G, Yu T (2003) Energy absorption of structures and materials. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  • Mertz HJ (1984) Injury assessment values used to evaluate Hybrid III response measurements. NHTSA Docket 74-14, Notice 32

    Google Scholar 

  • Mertz HJ (1993) Anthropomorphic test devices. Springer, New York, pp 66–84

    Google Scholar 

  • Moss S, Wang Z, Salloum M, Reed MP, van Ratingen M, Cesari D, Scherer R, Uchimura T, Beusenberg M (2000) Anthropometry for WorldSID a world-harmonized midsize male side impact crash dummy. SAE International (2000-01-2202)

    Google Scholar 

  • Paz J, Romera L, Díaz J (2017) Crashworthiness optimization of aircraft hybrid energy absorbers enclosing honeycomb and foam structures. AIAA J 55(2):652–661

    Article  Google Scholar 

  • Scholes A, Lewis J (1993) Development of crashworthiness for railway vehicle structures. Proc Inst Mech Eng Part F J Rail and Rapid Transit 207(1):1–16

    Article  Google Scholar 

  • Seiffert U, Wech L (2003) Automotive safety handbook. SAE International, Warrendale

    Google Scholar 

  • Sutton A (2002) The development of rail vehicle crashworthiness. Proc Inst Mech Eng Part F J Rail and Rapid Transit 216(2):97–108

    Article  Google Scholar 

  • UN Vehicle Regulations No. 94 (2017) Uniform provisions concerning the approval of vehicles with regard to the protection of the occupants in the event of a frontal collision. United Nations Economic Commission for Europe (UNECE)

    Google Scholar 

  • UN Vehicle Regulations No. 95 (2014) Uniform provisions concerning the approval of vehicles with regard to the protection of the occupants in the event of a lateral collision. United Nations Economic Commission for Europe (UNECE)

    Google Scholar 

  • Versace J (1971) A review of the severity index. SAE Technical Paper (710881)

    Google Scholar 

  • Yamada H (1970) Strength of biological materials. Williams & Wilkins, Baltimore

    Google Scholar 

  • Zimmerman RE, Merritt NA (1989) Aircraft crash survival design guide, vol 1. Design Criteria and Checklists. US Army Aviation Systems Command

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacobo Díaz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Díaz, J., Costas, M. (2019). Crashworthiness. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_223-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_223-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics