Skip to main content

Soft Impact

  • Living reference work entry
  • First Online:
  • 48 Accesses

Synonyms

Impact of soft projectiles; Low-strength projectile impact; Soft body impacts

Definitions

Soft impact refers to high kinetic events in which a collision occurs between an object and a structure, being the mechanical properties of the first quite low compared with the later material. In a “soft impact event,” the projectile is greatly deformed and even damaged during the interaction with the impacted structure, contrary to “rigid impact event” in which the projectile almost remains intact during the impact process. The typical examples of soft impacts are produced in the aerospace sector such as hail or ice impact, bird strike, and tire fragment impact.

Introduction

During its service life, structures can be subjected to a variety of loading cases. Restricted to dynamic loading, impact is one of the most concerning case due to its possible disastrous consequences. Impacts on structures can be produced by the accidental or the deliberate hit of an object into the structure that...

This is a preview of subscription content, log in via an institution.

References

  • Abrate S (2016) Soft impacts on aerospace structures. Prog Aerosp Sci 81:1–17. https://doi.org/10.1016/j.paerosci.2015.11.005. Dynamic loading aspects of composite materials

    Article  Google Scholar 

  • Airoldi A, Cacchione B (2006) Modelling of impact forces and pressures in lagrangian bird strike analyses. Int J Impact Eng 32:1651–1677

    Article  Google Scholar 

  • Allaeys F, Luyckx G, Paepegem WV, Degrieck J (2017) Characterization of real and substitute birds through experimental and numerical analysis of momentum, average impact force and residual energy in bird strike on three rigid targets: a flat plate, a wedge and a splitter. Int J Impact Eng 99(Supplement C):1–13. https://doi.org/10.1016/j.ijimpeng.2016.08.009

    Article  Google Scholar 

  • Anghileri M, Castelletti L, Invernizzi F, Mascheroni M (2005a) Birdstrike onto the composite intake of a turbofan engine. In: 5th European LS-DYNA user’s conference, Birmingham

    Google Scholar 

  • Anghileri M, Castelletti L, Tirelli M (2005b) Fluid-structure interaction of water filled tanks during the impact with the ground. Int J Impact Eng 31(3): 235–254

    Article  Google Scholar 

  • Anghileri M, Invernizzi F, Mascheroni M (2005c) A survey of numerical models for hail impact analysis using explicit finite element codes. Int J Impact Eng 31:929–944

    Article  Google Scholar 

  • Appleby-Thomas GJ, Hazell PJ, Dahini G (2011) On the response of two commercially-important CFRP structures to multiple ice impacts. Compos Struct 93(10):2619–2627

    Article  Google Scholar 

  • Artero-Guerrero J, Pernas-Sánchez J, Varas D, López-Puente J (2013) Numerical analysis of CFRP fluid-filled tubes subjected to high-velocity impact. Compos Struct 96:286–297

    Article  Google Scholar 

  • Artero-Guerrero J, Pernas-Sánchez J, López-Puente J, Varas D (2014) On the influence of filling level in CFRP aircraft fuel tank subjected to high velocity impacts. Compos Struct 107:570–577

    Article  Google Scholar 

  • Artero-Guerrero J, Pernas-Sánchez J, López-Puente J, Varas D (2015) Experimental study of the impactor mass effect on the low velocity impact of carbon/epoxy woven laminates. Compos Struct 133(Supplement C):774–781. https://doi.org/10.1016/j.compstruct.2015.08.027

    Article  Google Scholar 

  • Authors V (2000) Accident on 25 July 2000 at la patte d’oie in gonesse to the concorde registered f-btsc by air France. Ministere de l’Équipement des transports et du logement Buereau d’enquetes et d’analyses pour la secourite de l’aviation civile

    Google Scholar 

  • Banks R, Chandrasekhara D (1963) Experimental investigation of the penetration of a high-velocity gas jet through a liquid surface. J Fluid Mech 15:13–34

    Article  Google Scholar 

  • Baughn T, Graham L (1988) Simulation of a birdstrike impact on aircraft canopy material. J Aircr 25:659–664

    Article  Google Scholar 

  • Budgey R (2000) The development of a substitute artificial bird by the international birdstrike research group for use in aircraft component testing. In: International bird strike committee ISBC25/WP-IE3, Amsterdam

    Google Scholar 

  • Carney K, Melis M, Fasanella E, Lyle K, Gabrys J (2004) Material modeling of space shuttle leading edge and external tank materials for use in the Columbia accident investigation. NASA Report 20040070935

    Google Scholar 

  • Carney K, Benson D, Dubois P, Lee R (2006) A phenomenological high strain rate model with failure for ice. Int J Solids Struct 43:7820–7839

    Article  Google Scholar 

  • Chuzel Y (2009) Caractérisation expérimentale et simulation numérique d’impacts de glace a haute vitesse. PhD thesis, INSA, Lyon

    Google Scholar 

  • Combescure A, Chuzel-Marmot Y, Fabis J (2011) Experimental study of high-velocity impact and fracture of ice. Int J Solids Struct 48(20):2779–2790

    Article  Google Scholar 

  • Eschenfedler P (2001) Wildlife hazards to aviation. In: ICAO/ACI airports conference, Miami

    Google Scholar 

  • Fasanella E, Boitnott R (2006) Dynamic crush characterization of ice. Technical report, NASA

    Google Scholar 

  • Fasanella E, Lyle K, Gabrys J, Melis M, Carney K (2004) Test and analysis correlation of form impact onto space shuttle wing leading edge RCC panel 8. NASA Report 20040075041

    Google Scholar 

  • Georgiadis S, Gunnion A, Thomson R, Cartwright B (2008) Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge. Compos Struct 86:258–268

    Article  Google Scholar 

  • González E, Maimí P, Camanho P, Lopes C, Blanco N (2011) Effects of ply clustering in laminated composite plates under low-velocity impact loading. Compos Sci Technol 71(6):805–817. https://doi.org/10.1016/j.compscitech.2010.12.018

    Article  Google Scholar 

  • Guégan P, Othman R, LeBreton D, Pasco F, Swiergiel N, Thevenet P (2010) Experimental investigation of rubber ball impacts on aluminium plates. Int J Crashworthiness 15:391–399

    Article  Google Scholar 

  • Hancox N (1973) The erosion of carbon fibre reinforced plastic by repeated liquid impact. Wear 23(1):71–81. https://doi.org/10.1016/0043-1648(73)90042-2

    Article  Google Scholar 

  • Hu D, Song B, Wang D, Chen Z (2016) Experiment and numerical simulation of a full-scale helicopter composite cockpit structure subject to a bird strike. Compos Struct 149(Supplement C):385–397. https://doi.org/10.1016/j.compstruct.2016.04.035

    Article  Google Scholar 

  • Hughes K, Vignjevic R, Campbell J, Vuyst TD, Djordjevic N, Papagiannis L (2013) From aerospace to offshore: bridging the numerical simulation gaps-simulation advancements for fluid structure interaction problems. Int J Impact Eng 61:48–63

    Article  Google Scholar 

  • Johnson A, Holzapfel M, Kraft H, Reiter A (2006) Measurement of ice mechanical properties. Technical report IB 435 2006/55, DLR

    Google Scholar 

  • Johnson A, Toso-Pentecôte N, Schwinn D (2009) Modelling damage in composite aircraft panels under tyre rubber impact. In: Proceeding of 17th international conference on composite materials

    Google Scholar 

  • Jones S (1997) High strain-rate compression tests on ice. J Phys Chem B 101:6099–6101

    Article  Google Scholar 

  • Karagiozova D, Mines R (2007) Impact of aircraft rubber tyre fragments on aluminium alloy plates: II – numerical simulation using LS-DYNA. Int J Impact Eng 34:647–667

    Article  Google Scholar 

  • Kim H, Kedward K (1999) Experimental and numerical analysis correlation of hail ice impacting composite structures. Compos Struct 68:1–11

    Article  Google Scholar 

  • Kim H, Welch D, Kedward K (2003) Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels. Compos Part A Appl Sci Manuf 34:25–41

    Article  Google Scholar 

  • Lacome J (2004) Smoothed particle hydrodynamics method in LS-DYNA. In: 3rd German LS-DYNA forum, Bamberg

    Google Scholar 

  • Lewis C (1995) Engine bird ingestion. Airliner 1:17–19

    Google Scholar 

  • Liu J, Li Y, Xu F (2008) The numerical simulation of a bird-impact on an aircraft windshield by using the SPH method. Adv Mater Res 33–37:851–856

    Article  Google Scholar 

  • Liu J, Li Y, Gao X (2014) Bird strike on a flat plate: experiments and numerical simulations. Int J Impact Eng 70(Supplement C):21–37. https://doi.org/10.1016/j.ijimpeng.2014.03.006

    Article  Google Scholar 

  • Liu J, Li Y, Yu X, Tang Z, Gao X, Lv J, Zhang Z (2017) A novel design for reinforcing the aircraft tail leading edge structure against bird strike. Int J Impact Eng 105(Supplement C):89–101. https://doi.org/10.1016/j.ijimpeng.2016.12.017. Design and analysis of protective structures 2015

    Article  Google Scholar 

  • López-Puente J, Zaera R, Navarro C (2002) The effect of low temperatures on the intermediate and high velocity impact response of CFRPs. Compos Part B Eng 33:559–566

    Article  Google Scholar 

  • López-Puente J, Zaera R, Navarro C (2008) Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates. Compos Part A Appl Sci Manuf 39:374–387

    Article  Google Scholar 

  • MacKinnon B (2004) Sharing the skies: an aviation industry guide to the management of wildlife hazards. Civil Aviation, Transport Canada

    Google Scholar 

  • Mata-Díaz A, López-Puente J, Varas D, Pernas-Sánchez J, Artero-Guerrero J (2017) Experimental analysis of high velocity impacts of composite fragments. Int J Impact Eng 103(Supplement C):231–240. https://doi.org/10.1016/j.ijimpeng.2017.01.013

    Article  Google Scholar 

  • Matthewson MJ, Gorham DA (1981) An investigation of the liquid impact properties of a gfrp radome material. J Mater Sci 16(6):1616–1626. https://doi.org/10.1007/BF02396880

    Article  Google Scholar 

  • McCallum S, Constantinou C (2005) The influence of bird-shape in bird-strike analysis. In: 5th European LS-DYNA users conference, Birmingham

    Google Scholar 

  • Meguid S, Mao R, Ng T (2008) FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade. Int J Impact Eng 35:487–498

    Article  Google Scholar 

  • Melis M, Carney K, Gabrys J, Fasanella E, Lyle K (2004) A summary of the space shuttle Columbia tragedy and the use of ls dyna in the accident investigation and return to flight efforts. NASA Report 20040075041

    Google Scholar 

  • Mines R, McKown S, Birch R (2007) Impact of aircraft rubber tyre fragments on aluminium alloy plates: I-experimental. Int J Impact Eng 34:627–646

    Article  Google Scholar 

  • Neves R, Micheli G, Alves M (2010) An experimental and numerical investigation on tyre impact. Int J Impact Eng 37:685–693

    Article  Google Scholar 

  • Nizampatnam L (2007) Models and methods for bird strike load predictions. PhD thesis, Wichita State University

    Google Scholar 

  • Ogden R (1998) Nonlinear elastic deformations. Dover Publication Inc. Mineola, New York, USA

    MATH  Google Scholar 

  • Park H, Kim H (2010) Damage resistance of single lap adhesive composite joints by transverse ice impact. Int J Impact Eng 37:177–184

    Article  Google Scholar 

  • Pereira J, Padula S, Revilock D, Melis M (2006) Forces generated by high velocity impact of ice on a rigid structure. Technical report TM-2066-214263, NASA

    Google Scholar 

  • Pernas-Sánchez J, Pedroche D, Varas D, López-Puente J, Zaera R (2012) Numerical modeling of ice behavior under high velocity impacts. Int J Solids Struct 49(14):1919–1927

    Article  Google Scholar 

  • Pernas-Sánchez J, Artero-Guerrero JA, Varas D, López-Puente J (2014) Experimental analysis of normal and oblique high velocity impacts on carbon/epoxy tape laminates. Compos Part A Appl Sci Manuf 60(Supplement C):24–31. https://doi.org/10.1016/j.compositesa.2014.01.006

    Article  Google Scholar 

  • Pernas-Sánchez J, Artero-Guerrero JA, Varas D, López-Puente J (2015) Analysis of ice impact process at high velocity. Exp Mech 55(9):1669–1679

    Article  Google Scholar 

  • Pernas-Sánchez J, Artero-Guerrero J, Varas D, López-Puente J (2016a) Experimental analysis of ice sphere impacts on unidirectional carbon/epoxy laminates. Int J Impact Eng 96(Supplement C):1–10. https://doi.org/10.1016/j.ijimpeng.2016.05.010

    Article  Google Scholar 

  • Reese S, Raible T, Wriggers P (2001) Finite element modelling of orthotropic material behaviour in pneumatic members. Int J Solids Struct 38:9525–9544

    Article  Google Scholar 

  • Salehi H, Ziaei-Rad S, Vaziri-Zanjani M (2010) Bird impact effects on different types of aircraft bubble windows using numerical and experimental methods. Int J Crashworthiness 15:93–106

    Article  Google Scholar 

  • Schulson E (2001) Brittle failure of ice. Eng Fract Mech 68:1839–1887

    Article  Google Scholar 

  • Seddon CM, Moodie K, Thyer AM, Moatamedi M (2004) Preliminary analysis of fuel tank impact. Int J Crashworthiness 9(3):237–244. https://doi.org/10.1533/ijcr.2004.0277

    Article  Google Scholar 

  • Shazly M, Prakash V, Lerch B (2009) High strain-rate behavior of ice under uniaxial compression. Int J Solids Struct 46:1499–1515

    Article  Google Scholar 

  • Short J, Kelley M, Speelman R, McCarty R (2000) Birdstrike prevention: applying aeroscience and bio-science. In: International bird strike committee, IBSC25/WP-RS4, Amsterdam

    Google Scholar 

  • Stoll F, Brockman R (1997) Finite element simulation of high-speed soft-body impacts. In: Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics & materials conference, Kissimmee, pp 334–344

    Google Scholar 

  • Tippmann J, Kim H, Rhymer J (2013) Experimentally validated strain rate dependent material model for spherical ice impact simulation. Int J Impact Eng 57:43–54

    Article  Google Scholar 

  • Toso N, Johnson A (2011) LIBCOS-load upon impact behaviour of composite structure research project EASA.2009/3. Technical report, European Aviation Safety Agency

    Google Scholar 

  • Treloar L (1975) The physics of rubber elasticity. Oxford Clarendon Press, Oxford, UK

    Google Scholar 

  • Varas D, Zaera R, López-Puente J (2009) Numerical modelling of the hydrodynamic ram phenomenon. Int J Impact Eng 36(3):363–374

    Article  Google Scholar 

  • Varas D, Zaera R, López-Puente J (2012) Numerical modelling of partially filled aircraft fuel tanks submitted to Hydrodynamic Ram. Aerosp Sci Technol 16(1):19–28

    Article  Google Scholar 

  • Watanabe Y, Kaldjian M (1985) Modelling and analysis of bias-ply motorcycle tires. Math Model 6:80

    Article  Google Scholar 

  • Wilbeck J (1978) Impact behavior of low strength projectiles. Technical report AFML-TR-77-134, Air Force Materials Laboratory

    Google Scholar 

  • Wu L, Guo Y, Li Y (2009) Bird strike simulation on sandwich composite structure of aircraft radome. Explosion Shock Waves 29:642–647

    Google Scholar 

  • Zammit A, Kim M, Bayandor J (2010) Bird-strike damage tolerance analysis of composite turbofan engines. In: ICAS 2010, 27th international congress of the aeronautical sciences, Nice

    Google Scholar 

  • Zhu S, Tong M (2008) Study on bird shape sensitivity to dynamic response of bird strike on aircraft windshield. J Nanjing Univ Aeron Astronaut 40:551–555

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Artero-Guerrero .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Artero-Guerrero, J.A., Pernas-Sánchez, J., Varas, D., López-Puente, J. (2019). Soft Impact. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_209-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_209-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics