Encyclopedia of Continuum Mechanics

Living Edition
| Editors: Holm Altenbach, Andreas Öchsner

On Microfluidics Devices for Clinical Biosensor

  • Tarun Kumar Dhiman
  • G. B. V. S. Lakshmi
  • Pratima R. SolankiEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-662-53605-6_165-1



Microfluidic devices are the devices that make use of the property of the fluid flow through the narrow channels having diameters ranging from few to several hundreds of micrometers. Biosensors devices quantify the physiological analytes such as glucose that present in the human blood serum. They are also used in the detection of harmful contents or the representative moieties that are specific to various deadly diseases like cancer and also to detect various toxins present in both human bodies, water and fluids, food, and environment. Microfluidic-based biosensors are also used as the platform for detection of various analytes.


Microfluidics is the study of fluids and their properties in the micrometer size channels. These channels can have size ranging from few micrometers to several 100 micrometers (10–500 μm) (Whitesides 2006). Microfluidics is very promising and...
This is a preview of subscription content, log in to check access.


  1. Ali MA, Solanki PR, Patel MK, Dhayani H, Agrawal VV, John R, Malhotra BD (2013) A highly efficient microfluidic nano biochip based on nanostructured nickel oxide. Nanoscale 5:2883–2891CrossRefGoogle Scholar
  2. Azahar Ali M, Srivastava S, Solanki PR, Varun Agrawal V, John R, Malhotra BD (2012) Nanostructured anatase-titanium dioxide based platform for application to microfluidics cholesterol biosensor. Appl Phys Lett 101:084105CrossRefGoogle Scholar
  3. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45CrossRefGoogle Scholar
  4. Davis L III, Deutsch M (2010) Surface plasmon based thermo-optic and temperature sensor for microfluidic thermometry. Rev Sci Instrum 81:114905CrossRefGoogle Scholar
  5. Fiddes LK, Raz N, Srigunapalan S, Tumarkan E, Simmons CA, Wheeler AR, Kumacheva E (2010) A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions. Biomaterials 31:3459–3464CrossRefGoogle Scholar
  6. Franke TA, Wixforth A (2008) Microfluidics for miniaturized laboratories on a chip. ChemPhysChem 9:2140–2156CrossRefGoogle Scholar
  7. Friend J, Yeo L (2010) Fabrication of microfluidic devices using polydimethylsiloxane. Biomicrofluidics 4:026502CrossRefGoogle Scholar
  8. Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110CrossRefGoogle Scholar
  9. Justino CI, Duarte AC, Rocha-Santos TA (2017) Recent progress in biosensors for environmental monitoring: A review. Sensors 17:2918CrossRefGoogle Scholar
  10. Kaushik A, Arya SK, Vasudev A, Bhansali S (2013) Recent advances in detection of ochratoxin-A. Open J Appl Biosensor 2:1CrossRefGoogle Scholar
  11. Kim J, Cho H, Han S-I, Han K-H (2016) Single-cell isolation of circulating tumor cells from whole blood by lateral magnetophoretic microseparation and microfluidic dispensing. Anal Chem 88:4857–4863CrossRefGoogle Scholar
  12. Lee D et al (2007) Integrated ZnO surface acoustic wave microfluidic and biosensor system. In: Electron devices meeting, 2007. IEDM 2007. IEEE international, 2007. IEEE, pp 851–854Google Scholar
  13. Lin C-H, Lee G-B, Lin Y-H, Chang G-L (2001) A fast prototyping process for fabrication of microfluidic systems on soda-lime glass. J Micromech Microeng 11:726CrossRefGoogle Scholar
  14. Luan L, Evans RD, Jokerst NM, Fair RB (2008) Integrated optical sensor in a digital microfluidic platform. IEEE Sensors J 8:628–635CrossRefGoogle Scholar
  15. Matellan C, Armando E (2018) Cost-effective rapid prototyping and assembly of poly (methyl methacrylate) microfluidic devices. Sci Rep 8:6971CrossRefGoogle Scholar
  16. McDonald JC, Whitesides GM (2002) Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499CrossRefGoogle Scholar
  17. Milanova Sertova N (2015) Application of nanotechnology in detection of mycotoxins and in agricultural sector. J Cent Eur Agric 16:0–0Google Scholar
  18. Nikoleli G-P, Karapetis S, Bratakou S, Nikolelis DP, Tzamtzis N, Psychoyios VN, Psaroudakis N (2016) Biosensors for security and bioterrorism: definitions, history, types of agents, new trends and applications. In: Biosensors for security and bioterrorism applications. Cham, Springer, pp 1–13Google Scholar
  19. Perumal V, Hashim U (2014) Advances in biosensors: principle, architecture and applications. J Appl Biomed 12:1–15CrossRefGoogle Scholar
  20. Pinto IF, Santos DR, Caneira C, Soares RR, Azevedo A, Chu V, Conde JP (2018) Optical biosensing in microfluidics using nanoporous microbeads and amorphous silicon thin-film photodiodes: quantitative analysis of molecular recognition and signal transduction. J Micromech Microeng 28:094004CrossRefGoogle Scholar
  21. Ramanathan K, Danielsson B (2001) Principles and applications of thermal biosensors. Biosens Bioelectron 16:417–423CrossRefGoogle Scholar
  22. Rivas L, Mayorga-Martinez CC, Quesada-González D, Zamora-Gálvez A, de la Escosura-Muñiz A, Merkoçi A (2015) Label-free impedimetric aptasensor for ochratoxin-A detection using iridium oxide nanoparticles. Anal Chem 87:5167–5172CrossRefGoogle Scholar
  23. SalmanOgli A (2011) Nanobio applications of quantum dots in cancer: imaging, sensing, and targeting. Cancer Nanotechnol 2:1–19CrossRefGoogle Scholar
  24. Srigunapalan S, Eydelnant IA, Simmons CA, Wheeler AR (2012) A digital microfluidic platform for primary cell culture and analysis. Lab Chip 12:369–375CrossRefGoogle Scholar
  25. Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:310–315CrossRefGoogle Scholar
  26. Srivastava S, Solanki PR, Kaushik A, Ali MA, Srivastava A, Malhotra B (2011) A self assembled monolayer based microfluidic sensor for urea detection. Nanoscale 3:2971–2977CrossRefGoogle Scholar
  27. Tang SK, Whitesides GM (2009) Basic microfluidic and soft lithographic techniques. In: Fainman Y, Lee L, Psaltis D, Yang C (eds) Optofluidics: fundamentals, devices and applications. McGraw-Hill, New York, 2010Google Scholar
  28. Tiwari S, Gupta PK, Bagbi Y, Sarkar T, Solanki PR (2017) L-cysteine capped lanthanum hydroxide nanostructures for non-invasive detection of oral cancer biomarker. Biosens Bioelectron 89:1042–1052CrossRefGoogle Scholar
  29. Verma N, Bhardwaj A (2015) Biosensor technology for pesticides—a review. Appl Biochem Biotechnol 175:3093–3119CrossRefGoogle Scholar
  30. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368CrossRefGoogle Scholar
  31. Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575CrossRefGoogle Scholar
  32. Yoon Y-J, Li KHH, Low YZ, Yoon J, Ng SH (2014) Microfluidics biosensor chip with integrated screen-printed electrodes for amperometric detection of nerve agent. Sensors Actuators B Chem 198:233–238CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tarun Kumar Dhiman
    • 1
  • G. B. V. S. Lakshmi
    • 1
  • Pratima R. Solanki
    • 1
    Email author
  1. 1.Special Centre for NanoscienceJawaharlal Nehru UniversityNew DelhiIndia

Section editors and affiliations

  • Victor A. Eremeyev
    • 1
  1. 1.Faculty of Civil and Environmental EngineeringGdańsk University of TechnologyGdańskPoland