Advertisement

Ausdauer und Ausdauertraining im Sport

Anwendungsbereiche, Diagnostik, Trainingsformen, Organisation, Methoden, Anpassungen
  • Oliver FaudeEmail author
  • Lars Donath
Living reference work entry

Zusammenfassung

Die Ausdauerleistungsfähigkeit bezeichnet die Fähigkeit, körperliche Belastungen über einen längeren Zeitraum aufrechtzuerhalten bzw. die Ermüdung hinauszuzögern. Sie ist im Wesentlichen durch die Kapazität des Herz-Kreislauf-Systems und Stoffwechsels determiniert. Eine Ausdauerleistungsdiagnostik ist indiziert, wenn eine generelle Bestimmung des aktuellen Leistungsniveaus erforderlich ist, mit dem Ziel die maximale Kapazität von Herz-Kreislauf-System und/oder Stoffwechsel zu beurteilen. Bei der Auswahl geeigneter Testverfahren sollten Sicherheitsüberlegungen, mögliche Kontraindikationen, eine für den gegebenen Zweck ausreichende Standardisierung und die Einhaltung wissenschaftlicher Testgütekriterien berücksichtigt werden. Zur Verbesserung der Ausdauerleistungsfähigkeit existiert eine Reihe von Trainingsmethoden. Die Auswahl der geeigneten Trainingsmethode hängt vom Leistungsniveau, vom Trainingshintergrund sowie – zumindest teilweise – von individuellen Präferenzen der einzelnen Person ab.

Dieser Beitrag ist Teil der Sektion Sportmotorische Fähigkeiten und sportliches Training, herausgegeben vom Teilherausgeber Michael Fröhlich, innerhalb des Handbuchs Sport und Sportwissenschaft, herausgegeben von Arne Güllich und Michael Krüger.

Schlüsselwörter

Leistungstests Stoffwechsel Herzkreislaufsystem Belastung Training Gesundheit 

Literatur

  1. Abbiss, C. R., Peiffer, J. J., Meeusen, R., & Skorski, S. (2015). Role of ratings of perceived exertion during self-paced exercise: What are we actually measuring? Sports Medicine, 45, 1235–1243.CrossRefGoogle Scholar
  2. ACSM. (2010). ACSM´s guidelines for exercise testing and prescription (8. Aufl.). Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  3. Astrand, P. O., & Ryhming, I. (1954). A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. Journal of Applied Physiology, 7, 218–221.CrossRefGoogle Scholar
  4. Bangsbo, J., Iaia, F. M., & Krustrup, P. (2008). The Yo-Yo intermittent recovery test: A useful tool for evaluation of physical performance in intermittent sports. Sports Medicine, 38, 37–51.CrossRefGoogle Scholar
  5. Bassett, D. R., Jr., & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and Science in Sports and Exercise, 32, 70–84.CrossRefGoogle Scholar
  6. Bautmans, I., Lambert, M., & Mets, T. (2004). The six-minute walk test in community dwelling elderly: Influence of health status. BMC Geriatrics, 4, 6.CrossRefGoogle Scholar
  7. Beattie, K., Kenny, I. C., Lyons, M., & Carson, B. P. (2014). The effect of strength training on performance in endurance athletes. Sports Medicine, 44, 845–865.CrossRefGoogle Scholar
  8. Beneke, R., Leithauser, R. M., & Ochentel, O. (2011). Blood lactate diagnostics in exercise testing and training. International Journal of Sports Physiology and Performance, 6, 8–24.CrossRefGoogle Scholar
  9. Bishop, D., Jenkins, D. G., & Mackinnon, L. T. (1998). The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Medicine and Science in Sports and Exercise, 30, 1270–1275.CrossRefGoogle Scholar
  10. Boreham, C. A., Paliczka, V. J., & Nichols, A. K. (1990). A comparison of the PWC170 and 20-MST tests of aerobic fitness in adolescent schoolchildren. The Journal of Sports Medicine and Physical Fitness, 30, 19–23.PubMedGoogle Scholar
  11. Borg, G., & Noble, B. (1974). Perceived exertion. Exercise and Sports Sciences Reviews, 2, 131–153.Google Scholar
  12. Bös, K., Opper, E., Woll, A., Liebisch, R., Breithecker, D., & Kremer, B. (2001). Das Karlsruher Testsystem für Kinder (KATS-K) – Testmanual. Haltung und Bewegung, 21, 4–66.Google Scholar
  13. Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., Macdonald, M. J., McGee, S. L., et al. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. The Journal of Physiology, 586, 151–160.CrossRefGoogle Scholar
  14. Castagna, C., Manzi, V., Impellizzeri, F., Weston, M., & Barbero Alvarez, J. C. (2010). Relationship between endurance field tests and match performance in young soccer players. Journal of Strength and Conditioning Research, 24, 3227–3233.CrossRefGoogle Scholar
  15. Cooper, K. H. (1968). A means of assessing maximal oxygen intake. Correlation between field and treadmill testing. JAMA, 203, 201–204.CrossRefGoogle Scholar
  16. Coquart, J. B., Garcin, M., Parfitt, G., Tourny-Chollet, C., & Eston, R. G. (2014). Prediction of maximal or peak oxygen uptake from ratings of perceived exertion. Sports Medicine, 44, 563–578.CrossRefGoogle Scholar
  17. Coyle, E. F. (1995). Integration of the physiological factors determining endurance performance ability. Exercise and Sport Sciences Reviews, 23, 25–63.CrossRefGoogle Scholar
  18. Currell, K., & Jeukendrup, A. E. (2008). Validity, reliability and sensitivity of measures of sporting performance. Sports Medicine, 38, 297–316.CrossRefGoogle Scholar
  19. Cutsem, J. van, Marcora, S., De Pauw, K., Bailey, S., Meeusen, R., & Roelands, B. 2017. The effects of mental fatigue on physical performance: A systematic review. Sports Medicine 47, 1569–1588.CrossRefGoogle Scholar
  20. Donath, L., Zahner, L., Cordes, M., Hanssen, H., Schmidt-Trucksass, A., & Faude, O. (2013). Recommendations for aerobic endurance training based on subjective ratings of perceived exertion in healthy seniors. Journal of Aging and Physical Activity, 21, 100–111.CrossRefGoogle Scholar
  21. Faude, O., & Meyer, T. (2008). Methodische Aspekte der Laktatbestimmung [Methodological Aspects of Lactate Determination]. Deutsche Zeitschrift fur Sportmedizin, 59, 305–308.Google Scholar
  22. Faude, O., Kindermann, W., & Meyer, T. (2009). Lactate threshold concepts: How valid are they? Sports Medicine, 39, 469–490.CrossRefGoogle Scholar
  23. Faude, O., Schlumberger, A., Fritsche, T., Treff, G., & Meyer, T. (2010). Leistungsdiagnostische Testverfahren im Fußball – methodische Standards. [Performance Diagnosis in Football – Methodological Standards]. Deutsche Zeitschrift fur Sportmedizin, 61, 129–133.Google Scholar
  24. Faude, O., Hecksteden, A., Hammes, D., Schumacher, F., Besenius, E., Sperlich, B., et al. (2017). Reliability of time-to-exhaustion and selected psycho-physiological variables during constant-load cycling at the maximal lactate steady-state. Applied Physiology, Nutrition, and Metabolism, 42, 142–147.CrossRefGoogle Scholar
  25. Fünten, K. aus der, Faude, O., Hecksteden, A., Such, U., Hornberger, W., & Meyer, T. (2013a). Anatomie und Physiologie von Körper und Bewegung. In A. Güllich & M. Krüger (Hrsg.), Sport – Das Lehrbuch für das Sportstudium (S. 67–122). Berlin/Heidelberg: Springer.Google Scholar
  26. Fünten, K. aus der, Faude, O., Skorski, S., & Meyer, T. (2013b). Sportmedizin. In A. Güllich & M. Krüger (Hrsg.), Sport – Das Lehrbuch für das Sportstudium (S. 171–210). Berlin/Heidelberg: Springer.Google Scholar
  27. George, J. D., Vehrs, P. R., Allsen, P. E., Fellingham, G. W., & Fisher, A. G. (1993). VO2max estimation from a submaximal 1-mile track jog for fit college-age individuals. Medicine and Science in Sports and Exercise, 25, 401–406.PubMedGoogle Scholar
  28. George, J. D., Fellingham, G. W., & Fisher, A. G. (1998). A modified version of the Rockport Fitness Walking Test for college men and women. Research Quarterly for Exercise and Sport, 69, 205–209.CrossRefGoogle Scholar
  29. Gibala, M. J., Little, J. P., van Essen, M., Wilkin, G. P., Burgomaster, K. A., Safdar, A., et al. (2006). Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. The Journal of Physiology, 575, 901–911.CrossRefGoogle Scholar
  30. Hawley, J. A., & Noakes, T. D. (1992). Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. European Journal of Applied Physiology, 65, 79–83.CrossRefGoogle Scholar
  31. Helgerud, J., Engen, L. C., Wisloff, U., & Hoff, J. (2001). Aerobic endurance training improves soccer performance. Medicine and Science in Sports and Exercise, 33, 1925–1931.CrossRefGoogle Scholar
  32. Helgerud, J., Hoydal, K., Wang, E., Karlsen, T., Berg, P., Bjerkaas, M., et al. (2007). Aerobic high-intensity intervals improve VO2max more than moderate training. Medicine and Science in Sports and Exercise, 39, 665–671.CrossRefGoogle Scholar
  33. Helgerud, J., Karlsen, T., Kim, W. Y., Hoydal, K. L., Stoylen, A., Pedersen, H., et al. (2011). Interval and strength training in CAD patients. International Journal of Sports Medicine, 32, 54–59.CrossRefGoogle Scholar
  34. Hoff, J., & Helgerud, J. (2004). Endurance and strength training for soccer players: Physiological considerations. Sports Medicine, 34, 165–180.CrossRefGoogle Scholar
  35. Hottenrott, K., & Hoos, O. (2013). Sportmotorische Fähigkeiten und sportliche Leistungen – Trainingswissenschaft. In A. Güllich & M. Krüger (Hrsg.), Sport – Das Lehrbuch für das Sportstudium (S. 439–502). Berlin/Heidelberg: Springer.Google Scholar
  36. Iaia, F. M., Rampinini, E., & Bangsbo, J. (2009). High-intensity training in football. International Journal of Sports Physiology and Performance, 4, 291–306.CrossRefGoogle Scholar
  37. Illi, S. K., Held, U., Frank, I., & Spengler, C. M. (2012). Effect of respiratory muscle training on exercise performance in healthy individuals: A systematic review and meta-analysis. Sports Medicine, 42, 707–724.CrossRefGoogle Scholar
  38. Impellizzeri, F. M., Marcora, S. M., Castagna, C., Reilly, T., Sassi, A., Iaia, F. M., et al. (2006). Physiological and performance effects of generic versus specific aerobic training in soccer players. International Journal of Sports Medicine, 27, 483–492.CrossRefGoogle Scholar
  39. Jones, A. M. (2006). The physiology of the world record holder in the women´s marathon. Int J Sports Sci Coaching, 1, 101–116.CrossRefGoogle Scholar
  40. Joyner, M. J., & Coyle, E. F. (2008). Endurance exercise performance: The physiology of champions. The Journal of Physiology, 586, 35–44.CrossRefGoogle Scholar
  41. Kindermann, W. (1987). Ergometrie-Empfehlungen für die ärztliche Praxis. Deutsche Zeitschrift fur Sportmedizin, 38, 244–268.Google Scholar
  42. Laursen, P. B. (2010). Training for intense exercise performance: High-intensity or high-volume training? Scandinavian Journal of Medicine & Science in Sports, 20(2), 1–10.CrossRefGoogle Scholar
  43. Leger, L. A., & Lambert, J. (1982). A maximal multistage 20-m shuttle run test to predict VO2 max. European Journal of Applied Physiology and Occupational Physiology, 49, 1–12.CrossRefGoogle Scholar
  44. Marcora, S. M., & Staiano, W. (2010). The limit to exercise tolerance in humans: Mind over muscle? European Journal of Applied Physiology, 109, 763–770.CrossRefGoogle Scholar
  45. McCormick, A., Meijen, C., & Marcora, S. (2015). Psychological determinants of whole-body endurance performance. Sports Medicine, 45, 997–1015.CrossRefGoogle Scholar
  46. Meyer, T., Lucia, A., Earnest, C. P., & Kindermann, W. (2005a). A conceptual framework for performance diagnosis and training prescription from submaximal gas exchange parameters--theory and application. International Journal of Sports Medicine, 26, 38–48.CrossRefGoogle Scholar
  47. Meyer, T., Scharhag, J., & Kindermann, W. (2005b). Peak oxygen uptake. Myth and truth about an internationally accepted reference value. Zeitschrift für Kardiologie, 94, 255–264.CrossRefGoogle Scholar
  48. Midgley, A. W., McNaughton, L. R., & Jones, A. M. (2007). Training to enhance the physiological determinants of long-distance running performance: Can valid recommendations be given to runners and coaches based on current scientific knowledge? Sports Medicine, 37, 857–880.CrossRefGoogle Scholar
  49. Noakes, T. D., Peltonen, J. E., & Rusko, H. K. (2001). Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia. The Journal of Experimental Biology, 204, 3225–3234.PubMedGoogle Scholar
  50. Noakes, T. D., St Clair Gibson, A., & Lambert, E. V. (2004). From catastrophe to complexity: A novel model of integrative central neural regulation of effort and fatigue during exercise in humans. British Journal of Sports Medicine, 38, 511–514.CrossRefGoogle Scholar
  51. Noonan, V., & Dean, E. (2000). Submaximal exercise testing: Clinical application and interpretation. Physical Therapy, 80, 782–807.PubMedGoogle Scholar
  52. Oja, P., Laukkanen, R., Pasanen, M., Tyry, T., & Vuori, I. (1991). A 2-km walking test for assessing the cardiorespiratory fitness of healthy adults. International Journal of Sports Medicine, 12, 356–362.CrossRefGoogle Scholar
  53. Paavolainen, L., Hakkinen, K., Hamalainen, I., Nummela, A., & Rusko, H. (1999). Explosive-strength training improves 5-km running time by improving running economy and muscle power. Journal of Applied Physiology (1985), 86, 1527–1533.CrossRefGoogle Scholar
  54. Pageaux, B. (2014). The psychobiological model of endurance performance: An effort-based decision-making theory to explain self-paced endurance performance. Sports Medicine, 44, 1319–1320.CrossRefGoogle Scholar
  55. Pageaux, B., & Lepers, R. (2016). Fatigue induced by physical and mental exertion increases perception of effort and impairs subsequent endurance performance. Frontiers in Physiology, 7, 587.CrossRefGoogle Scholar
  56. Ramsbottom, R., Nute, M. G., & Williams, C. (1987). Determinants of five kilometre running performance in active men and women. British Journal of Sports Medicine, 21, 9–13.CrossRefGoogle Scholar
  57. Rasekaba, T., Lee, A. L., Naughton, M. T., Williams, T. J., & Holland, A. E. (2009). The six-minute walk test: A useful metric for the cardiopulmonary patient. Internal Medicine Journal, 39, 495–501.CrossRefGoogle Scholar
  58. Ribisl, P. M., & Kachadorian, W. A. (1969). Maximal oxygen intake prediction in young and middle-aged males. The Journal of Sports Medicine and Physical Fitness, 9, 17–22.PubMedGoogle Scholar
  59. Rowland, T. W., Rambusch, J. M., Staab, J. S., Unnithan, V. B., & Siconolfi, S. F. (1993). Accuracy of physical working capacity (PWC170) in estimating aerobic fitness in children. The Journal of Sports Medicine and Physical Fitness, 33, 184–188.PubMedGoogle Scholar
  60. Sartor, F., Vernillo, G., de Morree, H. M., Bonomi, A. G., La Torre, A., Kubis, H. P., et al. (2013). Estimation of maximal oxygen uptake via submaximal exercise testing in sports, clinical, and home settings. Sports Medicine, 43, 865–873.CrossRefGoogle Scholar
  61. Scharhag-Rosenberger, F., Meyer, T., Walitzek, S., & Kindermann, W. (2009). Time course of changes in endurance capacity: A 1-yr training study. Medicine and Science in Sports and Exercise, 41, 1130–1137.CrossRefGoogle Scholar
  62. Scharhag-Rosenberger, F., Meyer, T., Gassler, N., Faude, O., & Kindermann, W. (2010). Exercise at given percentages of VO2max: heterogeneous metabolic responses between individuals. Journal of Science and Medicine in Sport, 13, 74–79.CrossRefGoogle Scholar
  63. Seiler, K. S., & Kjerland, G. O. (2006). Quantifying training intensity distribution in elite endurance athletes: Is there evidence for an „optimal“ distribution? Scandinavian Journal of Medicine & Science in Sports, 16, 49–56.CrossRefGoogle Scholar
  64. Shephard, R. J., Allen, C., Benade, A. J., Davies, C. T., Di Prampero, P. E., Hedman, R., et al. (1968). The maximum oxygen intake. An international reference standard of cardiorespiratory fitness. Bulletin of the World Health Organization, 38, 757–764.PubMedPubMedCentralGoogle Scholar
  65. Skorski, S., & Abbiss, C. R. (2017). The manipulation of pace within endurance sport. Frontiers in Physiology, 8, 102.PubMedPubMedCentralGoogle Scholar
  66. Stevens, A. W., Olver, T. T., & Lemon, P. W. (2015). Incorporating sprint training with endurance training improves anaerobic capacity and 2,000-m Erg performance in trained oarsmen. Journal of Strength and Conditioning Research, 29, 22–28.CrossRefGoogle Scholar
  67. Stöggl, T., & Bjorklund, G. (2017). High intensity interval training leads to greater improvements in acute heart rate recovery and anaerobic power as high volume low intensity training. Frontiers in Physiology, 8, 562.CrossRefGoogle Scholar
  68. Stöggl, T., & Sperlich, B. (2014). Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Frontiers in Physiology, 5, 33.CrossRefGoogle Scholar
  69. Stöggl, T., & Sperlich, B. (2015). The training intensity distribution among well-trained and elite endurance athletes. Frontiers in Physiology, 6, 295.CrossRefGoogle Scholar
  70. Tomkinson, G. R., Leger, L. A., Olds, T. S., & Cazorla, G. (2003). Secular trends in the performance of children and adolescents (1980-2000): an analysis of 55 studies of the 20m shuttle run test in 11 countries. Sports Medicine, 33, 285–300.CrossRefGoogle Scholar
  71. Tucker, R. (2009). The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. British Journal of Sports Medicine, 43, 392–400.CrossRefGoogle Scholar
  72. Ulmer, H. V. (1996). Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback. Experientia, 52, 416–420.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Departement für Sport, Bewegung und GesundheitUniversität BaselBaselSchweiz
  2. 2.Institut für Trainingswissenschaft und Sportinformatik Abteilung Trainingswissenschaftliche InterventionsforschungDeutsche Sporthochschule KölnKölnDeutschland

Section editors and affiliations

  • Michael Fröhlich
    • 1
  1. 1.Fachgebiet SportwissenschaftTU KaiserslauternKaiserslauternDeutschland

Personalised recommendations