CIRP Encyclopedia of Production Engineering

2019 Edition
| Editors: Sami Chatti, Luc Laperrière, Gunther Reinhart, Tullio Tolio


  • Dirk BiermannEmail author
  • Tobias Surmann
Reference work entry


The term stability as used in this entry is a property of an equilibrium of a dynamic system. There are various definitions of stability which describe how a dynamic system being at an equilibrium reacts on a small disturbance (Plaschko and Brod 1995). In machining science, the Lyapunov stability and the asymptotic stability are of high interest. Consider the continuous dynamic system:
$$ \dot{x}=f\left(x(t)\right),\kern0.5em x(0)={x}_0. $$
This is a preview of subscription content, log in to check access.


  1. Altintas Y (2000) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, New YorkGoogle Scholar
  2. Bachrathy D, Insperger T, Stpn G (2009) Surface properties of the machined workpiece for helical mills. Mach Sci Technol 13(2):227245CrossRefGoogle Scholar
  3. Budak E, Altintas Y (1998) Analytical prediction of chatter stability in milling, part I: general formulation. J Dyn Sys Meas Control T ASME 120(1):2230Google Scholar
  4. Ewins DJ (2000) Modal testing: theory, practice and application, 2nd edn. Research Studies Press, BaldockGoogle Scholar
  5. Hartung F, Insperger T, Stpn G, Turi J (2006) Approximate stability charts for milling processes using semi-discretization. Appl Math Comput 174(1):5173. Scholar
  6. He J, Fu ZF (2001) Modal analysis. Butterworth Heinemann, OxfordGoogle Scholar
  7. Insperger T, Stpn G (2011) Semi-discretization for time-delay systems: stability and engineering applications. Springer, New YorkCrossRefGoogle Scholar
  8. Insperger T, Gradisek J, Kalveram M, Stepan G, Weinert K, Govekar E (2006) Machine tool chatter and surface location error in milling processes. J Manuf Sci Eng 128(4):913920. Scholar
  9. Plaschko P, Brod K (1995) Nichtlineare dynamik, bifurkation und chaotische systeme [non-linear dynamics, bifurcation and chaotic systems]. Vieweg, Braunschweig (in German)zbMATHCrossRefGoogle Scholar
  10. Schmitz TL, Smith KS (2009) Machining dynamics frequency response to improved productivity. Springer, New YorkGoogle Scholar

Copyright information

© CIRP 2019

Authors and Affiliations

  1. 1.Institut für Spanende FertigungTechnische Universität DortmundDortmundGermany
  2. 2.Premium AEROTEC GmbHVarelGermany
  3. 3.Mechanical EngineeringTechnical University of Dortmund ISFDortmundGermany

Section editors and affiliations

  • Hans-Christian Möhring
    • 1
  1. 1.Institut für WerkzeugmaschinenUniversität StuttgartStuttgartGermany