Advertisement

Wärmestrahlung – Superisolierungen

  • Harald ReissEmail author
Living reference work entry
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Supplementary material

Literatur

  1. 1.
    Kaganer, M.G.: Thermal insulation in Cryogenic engineering. Engl. translation by Moscona A, Israel Progr. Sci. Transl., Jerusalem, from Teplovaya Izolyatsiya v Tekhnike Nizkikh Temperatur, Izdatel’stvo. „Mashinostroenie“, Moscow (1966) (1969)Google Scholar
  2. 2.
    Tien, C.L., Cunnington, G.R.: Cryogenic Insulation Heat Transfer. In: Irvine Jr., T.F., Hartnett, J.P. (Hrsg.) Advances in Heat Transfer, Bd. 9, S. 349–417. Academic, New York (1973)Google Scholar
  3. 3.
    Glaser, P.E., Black, I.A., Lindstrom, R.S., Ruccia, F.E.: Thermal Insulation Sytems – A Survey. NASA SP – 5027 (1967)Google Scholar
  4. 4.
    Sutherland, W.: The viscosity of gases and molecular force. Philos. Mag. 36, 507–531 (1893)CrossRefGoogle Scholar
  5. 5.
    Ardenne M von (1973) Tabellen zur Angewandten Physik, III, VEB Deutscher Verlag der Wissenschaften, BerlinGoogle Scholar
  6. 6.
    Eucken, A.: Allgemeine Gesetzmäßigkeiten über das Wärmeleitvermögen verschiedener Stoffarten und Aggregatzustände. Forschg. Geb. Ing. Wes. 11, 6–20 (1949)CrossRefGoogle Scholar
  7. 7.
    Reiss, H.: Radiative transfer in nontransparent, dispersed media. Springer Tracts in Modern Physics, Bd. 113. Springer, Berlin (1988)Google Scholar
  8. 8.
    Wakao, N., Vortmeyer, D.: Pressure dependency of effective thermal conductivity of packed beds. Chem. Eng. Sci. 26, 1753–1765 (1971)CrossRefGoogle Scholar
  9. 9.
    Laa, C., Hirschl, C., Stipsitz, J.: Heat flow measurement and analysis of thermal vacuum insulation. In: Weisend II, J.G. (Hrsg.) CP 985, Advance Cryogenic Engineering: Transacts. Cryogenic Engineering Conference – CEC, Bd. 53, S. 1351–1358 (2008)Google Scholar
  10. 10.
    Kennard, E.H.: Kinetic Theory of Gases. MacGraw-Hill Book Company, New York (1938)Google Scholar
  11. 11.
    Lehmann, W.: Superisolation (SI) – Deren Qualität und Degradierung bei Anwendungen in der Kryotechnik. Deutscher Kälte- und Klimatechnischer Verein e.V. (DKV), DKV-Tagungsbericht, Bremen, 27. Jahrg., Band I (2000)Google Scholar
  12. 12.
    Büttner, D., Kreh, A., Fricke, J., Reiss, H.: Recent advances in thermal superinsulations. In: Proceedings of the 11th European Conference on Thermophysical Properties, Umea (1988), High Temperatures High Pressures, Bd. 21, S. 39–50 (1989)Google Scholar
  13. 13.
    Büttner, D., Fricke, J., Reiss, H.: Thermal conductivity of evacuated load-bearing powder and fiber insulations – Measurements with the improved 700 × 700 mrn2 variable load guarded hot plate device. In: Proceedings of the 9th European Conference on Thermophysical Properties, Manchester (1984), High Temperatures – High Pressures, Bd. 17, S. 333–341 (1985)Google Scholar
  14. 14.
    Schäfer, L.: Untersuchungen zur Wärmeleitfähigkeit von bereichsweise gestützten Folienisolationen anhand eines dynamischen Meßverfahrens. Diploma thesis, Physikalisches Institut, Universität Würzburg (1986)Google Scholar
  15. 15.
    Langer, H., Rust, W.: Wärmeisolierung durch Superisolation. Forschungsbericht T 75–42. Bundesministerium für Forschung und Technologie, Bonn (1975)Google Scholar
  16. 16.
    Neumann, H.: Concept for thermal insulation arrangement within a flexible cryostat for HTS power cables. Cryogenics 44, 93–99 (2004)CrossRefGoogle Scholar
  17. 17.
    Masi, S., Cardoni, P., de Bernardis, P., Piacentini, F., Raccanelli, A., Scaramuzzi, F.: A long duration cryostat suitable for balloon borne photometry. Cryogenics 39, 217–224 (1999)CrossRefGoogle Scholar
  18. 18.
    Wilson, M.N.: Superconducting magnets. Oxford Science Publications, Oxford University Press, reprinted in paperback (1986)Google Scholar
  19. 19.
    Walter, H., Bock, J., Siems, S.O., Canders, W.R., Freyhardt, H.C., Kesten, M., Fieseler, H.: Kryobehälter mit HTS-Lagerung, Tagungsband 8. Statusseminar Supraleitung und Tieftemperaturtechnik, Garmisch-Partenkirchen, Germany. Verein Deutscher Ingenieure, VDI Technologiezentrum, Düsseldorf (2003)Google Scholar
  20. 20.
    Siegel, R., Howell, J.R.: Thermal Radiation Heat Transfer. McGraw Hill Kogakusha Ltd, Tokyo (1972)Google Scholar
  21. 21.
    Fricke, J., Caps, R, Hümmer, E., Döll, G., Arduini, M.C., De Ponte, F.: Optically thin fibrous insulations. ASTM C 16 Meeting, Bal Harbour (1987)Google Scholar
  22. 22.
    Luikov, A.V.: Heat and Mass Transfer in Capillary-Pourous Bodies (trans: Harrison, P.W.B.). Pergamon Press, Oxford (1966)Google Scholar
  23. 23.
    Kutzner, K., Schmidt, F., Wietzke, I.: Radiative and conductive heat transmission through superinsulations – experimental results for aluminium coated plastic foils. Cryogenics (Juli 1973):396–404 (1973)CrossRefGoogle Scholar
  24. 24.
    Bach, G.: Über die Erwärmung des n-Körper-Systems. Archiv f. Elektrotechnik. XXVII(11), 749–760 (1933)CrossRefGoogle Scholar
  25. 25.
    Reiss, H.: A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks, Part I: Stationary conditions. Cryogenics 44, 259–271 (2004)CrossRefGoogle Scholar
  26. 26.
    Reiss, H.: A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks, Part II: Unsteady-state conditions (cool-down period). Cryogenics 46, 864–872 (2006)CrossRefGoogle Scholar
  27. 27.
    Roth, A.: Vacuum Technology, 3. Aufl. North Holland, published by Elsevier Science Publishers B. V., Amsterdam (1990)Google Scholar
  28. 28.
    Wutz, M.: Handbuch Vakuumtechnik. Theorie und Praxis. Vieweg, Wiesbaden, Gebundene Ausgaben (2000)CrossRefGoogle Scholar
  29. 29.
    Reiss, H.: A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks, Part III: Unsteady-state conditions (evacuation period). Cryogenics 46, 873–880 (2006)CrossRefGoogle Scholar
  30. 30.
    Kollie, T.G., Thacker, L.H., Fine, H.A.: Instrument for measurement of vacuum in sealed thin wall packets. US-Patent 524 945 4 (1993)Google Scholar
  31. 31.
    Verschoor, J.D., Greebler, P.: Heat transfer by gas conduction and radiation in fibrous insulations. J. Heat Transf. 74, 961–968 (1952)Google Scholar
  32. 32.
    Reichenauer, G., Heinemann, U., Ebert, H.-P.: Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity. Colloids Surf. A Physicochem. Eng. Asp. 300, 204–210 (2007)CrossRefGoogle Scholar
  33. 33.
    Geisler, M., Ebert, H.-P.: Thermal characterization and effect of deposited CO2 on a cryogenic insulation system based on a spherical powder. Int. J. Thermophys. 37(80), 2–18 (2016).  https://doi.org/10.1007/s10765-016-2087-4
  34. 34.
    Nyquist, R.A., Kagel, R.O.: Infrared Spectra of Inorganic Compounds (3800-45 cm−1). Academic, New York/London (1971)Google Scholar
  35. 35.
    Caps, R.: Strahlungswärmeströme in evakuierten thermischen Superisolationen. PhD thesis, Physikalisches Institut, Universität Würzburg (1985)Google Scholar
  36. 36.
    Rosseland, S.: Astrophysik auf atomtheoretischer Grundlage. In: Born, M., Franck, J. (Hrsg.) Struktur der Materie in Einzeldarstellungen. Verlag von Julius Springer, Berlin (1931)Google Scholar
  37. 37.
    Kerker, M.: The scattering of light and other electromagnetic radiation. In: Loebl, M. (Hrsg.) Physical Chemistry. A Series of Monographs. Academic, New York/London (1969)Google Scholar
  38. 38.
    Tien, C.L., Cunnington, G.R. Cryogenic insulation heat transfer, ibid; the authors refer to the original work of Tien CL, Chan CK, Cunnington GR (1972) J. Heat Transfer 94C. 41 (1972)Google Scholar
  39. 39.
    Gaskell, P.H., Johnson, D.W.: The optical constants of quartz, vitreous silica and neutron-irradiated vitreous silica (1). J. Non-Cryst. Solids 20, 153–169 (1976)CrossRefGoogle Scholar
  40. 40.
    McKay, N.L., Timusk, T.: Farnworth, B.: determination of optical properties of fibrous thermal insulation. J. Appl. Phys. 55, 4064–4071 (1984)CrossRefGoogle Scholar
  41. 41.
    Mathes, R., Blumenberg, J., Keller, K.: Radiative heat transfer in insulations with random fibre orientation. Int. J. Heat Mass Transf. 33, 767–770 (1990)CrossRefGoogle Scholar
  42. 42.
    Hsieh, C.K., Su, K.C.: Thermal radiative properties of glass from 0.32 to 206 μm. Sol. Energy 22, 3–43 (1979)CrossRefGoogle Scholar
  43. 43.
    Harris, L.: Preparation and infrared properties of aluminum oxide films. J. Opt. Soc. Am. 45, 27–29 (1955)CrossRefGoogle Scholar
  44. 44.
    Harris, L., Piper, J.: Transmittance and ref1ectance of aluminum oxide films in the far infrared. J. Opt. Soc. Am. 52, 223–224 (1962)CrossRefGoogle Scholar
  45. 45.
    Fricke, J. (Hrsg.): Aerogels, Springer Proceeding in Physics, Bd. 6. Springer, Berlin/Heidelberg (1986)Google Scholar
  46. 46.
    Cockett, A.H., Molnar, W.: Recent improvements in insulants. Cryogenics (September 1960) 21–26 (1960)CrossRefGoogle Scholar
  47. 47.
    Serebryanyi, G.L., Zarudnyi, L.B., Shorin, S.N.: Measurement of the heat conductivity coefficient of vacuum-powder insulation at high temperatures. Engl. translation from Teplofizika Vysokikh Temperatur 6:547–548, Plenum Publishing Corporation, New York (1968)Google Scholar
  48. 48.
    Büttner, D., Fricke, J., Krapf, R., Reiss, H.: Measurement of the thermal conductivity of evacuated load-bearing, high- temperature powder and glass board insulations with a 700 × 700 mm2 guarded hot plate device. In: Proceedings of the 8th European Conference on Thermophysical Properties, Baden-Baden (1982), High Temperatures – High Pressures, Bd. 15, S. 233–240 (1983)Google Scholar
  49. 49.
    Ziegenbein, B.: Evacuated high-temperature insulations for electrochemical batteries. In: Proceedings of the 8th European Conference on Thermophysical Properties, Baden-Baden (1982), High Temperatures – High Pressures, Bd. 15, S. 329–334 (1983)Google Scholar
  50. 50.
    Caps, R., Büttner, D., Fricke, J., Reiss, H.: Improving the extinction properties of an evacuated high temperature powder insulation. In: Proceedings of the 8th European Conference on Thermophysical Properties, Baden Baden (1982), High Temperatures – High Pressures, Bd. 15, S. 225–232 (1983)Google Scholar
  51. 51.
    Caps, R., Trunzer, A., Büttner, D., Fricke, J., Reiss, H.: Spectral transmission and reflection properties of high temperature insulation materials. Int. J. Heat Mass Transf. 27, 1865–1872 (1984)CrossRefGoogle Scholar
  52. 52.
    Cabannes, F., Maurau, J.-C., Hyrien, H., Klarsfeld, S.M.: Radiative heat transfer in fibreglass insulating materials as related to their optical properties. High Temp. High Pressures 11, 429–434 (1979)Google Scholar
  53. 53.
    Cabannes, F.: Propriétés infrarouges et conductivité thermique par rayonnement des isolants thermiques à fibres réfractaires. Rev Int Hautes Temp Réfract 17, 120–133 (1980)Google Scholar
  54. 54.
    Mayer, G.: IR-optische Untersuchungen an Faserdämmstoffen, Diplomarbeit, Physikalisches Institut, Universität Würzburg, Report E 21-0589-3 (1989)Google Scholar
  55. 55.
    Landolt-Börnstein: Zahlenwerte und Funktionen, 6. Aufl., Eigenschaften der Materie in ihren Aggregatzuständen, 4. Teil, Wärmetechnik, Bd. IV. Springer, Berlin (1972)Google Scholar
  56. 56.
    Lu, X., Wang, P., Arduini-Schuster, M.C., Kuhn, J., Büttner, D., Nilsson, O., Heinemann, U., Fricke, J.: Thermal transport in organic and opacified silica monolithic aerogels. J. Non-Cryst. Solids 145, 207–210 (1992)CrossRefGoogle Scholar
  57. 57.
    Caps, R.: Vacuum Insulation Panels for Buildings and Technical Applications. EPIC Conference, Lyon (2006)Google Scholar
  58. 58.
    Ghazi Wakili, K., Bundi, R., Binder, B.: Effective thermal conductivity of vacuum insulation panels. Build. Res. Inf. 32, 293–299 (2004)CrossRefGoogle Scholar
  59. 59.
    Grynning St., Jelle, B.P., Uvsløkk, S., Gustavsen, A., Baetens, R., Caps, R., Meløysund, V.: Hot box investigations and theoretical assessments of miscellaneous vacuum insulation panel configurations in building envelopes. J. Build. Phys. 34, 297–324 (2010)Google Scholar
  60. 60.
    Wessling, F.C., Moser, M.D., Blackwood, J.M.: Subtle issues in the measurement of the thermal conductivity of vacuum insulation panels. J. Heat Transf. 126, 155–160 (2004)CrossRefGoogle Scholar
  61. 61.
    Bode, K.H.: Wärmeleitfähigkeitsmessungen mit dem Plattengerät: Einfluß der Schutzringbreite auf die Meßunsicherheit. Int. J. Heat Mass Transf. 23, 961–970 (1980)CrossRefGoogle Scholar
  62. 62.
    Degussa, A.G.: Zweigniederlassung Wolfgang, Hanau, Germany VIP VR 224/255; auch: Kerner, D., Klose, M., Renz, R., Reuter, R., Schubert, J., Sextl, G (1996) Vakuum-Isolations-Panels (VIPs), Eigenschaften, Herstellung und Einsatzmöglichkeiten, Degussa AG, Frankfurt am Main (1996)Google Scholar
  63. 63.
    Dengler, J., Helde, A., Wirth, H.: Wärmeleitfähigkeitsmessungen an Vakuumisolationsplatten Ber. TOS 3- 9512- JJD- E07. Fraunhofer-Institut für Solare Energiesysteme, Freiburg (1995)Google Scholar
  64. 64.
    Fricke, J., Beck, A., Binder, M.: Vakuum-Isolations-Paneele für Gebäude – ein Lehrbuch. ZAE Bayern, Würzburg (2007). ISBN 978-3-00-022618-2Google Scholar
  65. 65.
    Tenpierik, M.: Vacuum insulation panels applied in building constructions. Dissertation, TU Delft, Delft (2009). ISBN 10: 90-9024-150-0, ISBN-13: 978-90-9024-150-0Google Scholar
  66. 66.
    De Meersman, G., Van den Bossche, N., Janssens, A.: Long term durability of vacuum insulation panels: Determination of the Sd-value of MF-2 foils. Energy Procedia 78, 1574–1580 (2015)CrossRefGoogle Scholar
  67. 67.
    Johansson, P., Adl-Zarrabi, B., Berge, A.: Evaluation of long-term performance of VIPs. Energy Procedia 78, 388–393 (2015)CrossRefGoogle Scholar
  68. 68.
    Schwab, H., Heinemann, U., Beck, A., Ebert, H.-P., Fricke, J.: Prediction of service life for vacuum insulation panels with fumed silica kernel and foil cover. J. Therm. Env. & Bldg. Sci. 28, 357–374 (2005)CrossRefGoogle Scholar
  69. 69.
    Simmler, H., Brunner, S., Heinemann, U., Schwab, H., Kumaran, K., Mukhopadhyaya, P., Quénard, D., Sallée, H., Noller, K., Kücükpinar-Niarchos, E., Stramm, C., Tenpierik, M., Cauberg, H., Erb, M.: Vacuum insulation panels – study on VIP-components and panels for service life predictions of VIP in building applications (Subtask A), HiPTI – High Performance Thermal Insulation. IEA/ECBCS Annex. 39, 1–153 (2005)Google Scholar
  70. 70.
    Bauer, A.: Analytische Modellierung des Strahlungswärmestromes in Superisolationen. Diplomarbeit, Lehrstuhl C für Thermodynamik der TU München, Germany (1990)Google Scholar
  71. 71.
    Reiss, H. Strahlungstransport in dispersen nicht-transparenten Medien, Habilitationsschrift, Universität Würzburg (1985)Google Scholar
  72. 72.
    Ebert, H.-P., Arduini-Schuster, M., Fricke, J., Caps, R., Reiss, H.: Infrared-radiaiton screens with very thin metallised glass fibres. High Temp. High Pressures 23, 143–148 (1991)Google Scholar
  73. 73.
    Swanström, L., Reiss, H., Troitsky, OYu.: Environmental balances of thermal superinsulations. In: Proceedings of the 17th European Conference on Thermophysical Properties, Bratislava (2005), paper No. 39; International Journal Thermophysics, Bd. 28, S. 1653–1667 (2007)CrossRefGoogle Scholar
  74. 74.
    Tsederberg, N.V.: Thermal Conductivity of Gases and Liquids (trans: Scripta Technica, Cess, R.D.). MIT Press, Cambridge, MA (1965)Google Scholar
  75. 75.
    Viskanta, R.: Heat transfer by conduction and radiation in absorbing and scattering materials, Trans. ASME, J. Heat Transf. 2/65:143–150 (1965)CrossRefGoogle Scholar
  76. 76.
    Chandrasekhar, S.: Radiative transfer, Dover Publication, New York, paperback edition (1960), originally publication. Oxford University, Oxford (1950)Google Scholar
  77. 77.
    Reiss, H., Troitsky, OYu.: Radiative transfer and its impact on thermal diffusivity determined in remote sensing, In: Reimer, A (Hrsg.) Horizons in World Physics, Nova Science Publishers, Inc., New York, 276, 1–67 (2011)Google Scholar
  78. 78.
    Petrov, V.A.: Combined radiation and conduction heat transfer in high temperature fiber thermal insulation. Int. J. Heat Mass Transf. 40, 2241–2247 (1997)CrossRefGoogle Scholar
  79. 79.
    Touloukian, Y.S., DeWitt, D.P.: Thermophysical Properties of Matter, Thermal Radiative Properties, Metallic Elements and Alloys. IFI/Plenum, New York/Washington, DC (1970)Google Scholar
  80. 80.
    Holzer, D., Stoeri, H., Musilova, V., Kralik, T., Mayrhofer, R., Stipsitz, J., Laa, C.: The impact of directional emissivities on the heat transfer between cryogenic aluminium surfaces down to liquid helium temperature. In: Proceedings of the ICEC 22 – ICMC, Seoul, July 2008, S. 21–25 (2008)Google Scholar
  81. 81.
    Turner, A.F.: Reflectance properties fo thin films and multilayers. In: Blau, H., Fischer, H. (Hrsg.) Radiative Transfer from Solid Materials, S. 24–60. The Macmillan Company, New York (1962)Google Scholar
  82. 82.
    Musilova, V., Hanzelka, P., Kralik, T., Srnka, A.: Low temperature radiative properties of materials used in cryogenics. Cryogenics 45, 529–536 (2005)CrossRefGoogle Scholar
  83. 83.
    Heaney, J.B.: Efficiency of aluminized mylar insulation at cryogenic temperatures. SPIE. 3435, 150–157 (1998)Google Scholar
  84. 84.
    Hirschl, C., Kralik, T., Laa, C., Musilova, V., Schmidt, T., Stipsitz, J.: Heat transfer through superinsulation from ambient to cryogenic temperatures. In: Proceedings of the ICEC 21, Bd. 1, S. 643–647 (2006)Google Scholar
  85. 85.
    Dobrozemsky, R., Hirschl, C., Laa, C., Stipsitz, J.: Gas flow through narrow gaps at low pressure in Super-insulation packages. Proc. Cryo. Prague. (2008).  https://doi.org/10.13140/2.1.4886.0803
  86. 86.
    Reiss, H.: Wärmeströme in thermischen Isolierungen. Phys. Blä. 48, 617–622 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Fakultät für Physik und AstronomieJulius-Maximilians-UniversitätWürzburgDeutschland

Section editors and affiliations

  • Stephan Kabelac
    • 1
  1. 1.Institut für ThermodynamikLeibniz Universität HannoverHannoverDeutschland

Personalised recommendations